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When reminded of an unpleasant experience, people often try to ex-
clude the unwanted memory from awareness, a process known as
retrieval suppression. Despite the importance of this form of mental
control to mental health, the ability to track, in real time, individual
memories as they are suppressed remains elusive. Here we used
multivariate decoding on EEG data to track how suppression unfolds
in time and to reveal its impact on cortical patterns related to indi-
vidual memories. We presented reminders to aversive scenes and
asked people to either suppress or to retrieve the scene. During
suppression, mid-frontal theta power within the first 500 ms distin-
guished suppression from passive viewing of the reminder, indicating
that suppression rapidly recruited control. During retrieval, we could
discern EEG cortical patterns relating to individual memories-initially,
based on theta-driven, visual perception of the reminders (0-500 ms)
and later, based on alpha-driven, reinstatement of the aversive scene
(500-3000 ms). Critically, suppressing retrieval weakened (during 420-
600 ms) and eventually abolished item-specific cortical patterns, a
robust effect that persisted until the reminder disappeared (1200-3000
ms). Actively suppressing item-specific cortical patterns, both during
an early (300-680 ms) window and during sustained control, predicted
later episodic forgetting. Thus, both rapid and sustained control con-
tribute to abolishing cortical patterns of individual memories, limiting
awareness, and precipitating later forgetting. These findings reveal
how suppression of individual memories from awareness unfolds in
time, presenting a precise chronometry of this process.
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Introduction1

Following an upsetting event, memories of the experience of-2

ten come to mind uninvitedly. Even seemingly innocuous3

reminders can bring us back to the traumatic scene in the4

blink of an eye, triggering intrusive memories and distress.5

When this happens, people often recruit inhibitory control to6

terminate unwelcome retrieval, a process known as retrieval7

suppression (Anderson & Hulbert, 2020; Küpper et al., 2014).8

An ability to control aversive memories and to keep them9

out of awareness can promote resilience and safeguard mental10

well-being, especially in the aftermath of trauma (Anderson11

& Hanslmayr, 2014; Catarino et al., 2015; Engen & Ander-12

son, 2018; Hu et al., 2017; Mary et al., 2020). Despite the13

fundamental importance of this process, much remains un-14

known about its basic mechanisms. Indeed, no study has15

yet observed individual memories as they are suppressed, a16

pre-requisite to tracking the dynamics of memory control.17

Observing suppression unfold in real time is fundamental to18

advance neurobiological models of memory control, and to19

inform novel interventions that may aid people in forgetting20

unwanted memories.21

Neuroimaging research suggests that during retrieval sup-22

pression, when a person sees a reminder to an unwanted 23

memory, the prefrontal cortex exerts inhibitory control over 24

the hippocampus and its adjacent medial temporal lobe struc- 25

tures to stop retrieval (Anderson et al., 2004; Depue et al., 26

2007). Furthermore, inhibitory control down-regulates activity 27

in content-specific neocortical areas implicated in the encoding 28

of the original memory (Benoit et al., 2015; Depue et al., 2007; 29

Gagnepain et al., 2014, 2017; Hu et al., 2017; Mary et al., 30

2020). Given its limited temporal resolution, however, func- 31

tional magnetic resonance imaging does not permit a detailed 32

account of the temporal dynamics underlying the suppression 33

of individual memory representations. 34

Conversely, although EEGs have the temporal resolution 35

needed to track the online dynamics of retrieval suppression 36

(Bergström et al., 2009; Hellerstedt et al., 2016; Hu et al., 37

2015; Zhang et al., 2016), its poor spatial resolution has his- 38

torically rendered it difficult to isolate individual memories 39

as they are suppressed. However, advances in multivariate 40

pattern analysis have allowed researchers to exploit distinctive 41

EEG scalp distributions to identify specific memory repre- 42

sentations (Bae & Luck, 2018; Treder et al., 2021; Wolff et 43

al., 2017). Here, leveraging EEGs’ temporal resolution, and 44

multivariate decoding analyses, we sought to isolate cortical 45

EEG patterns unique to individual memories, and to observe 46

suppression abolishing such patterns in real time. For this 47

purpose, we adapted the think/no-think paradigm to require 48

our participants to voluntarily retrieve or to suppress aver- 49

sive scenes when confronting reminders (Anderson & Green, 50

2001; Depue et al., 2007; Küpper et al., 2014). To track the 51

temporal dynamics of retrieval suppression, we took a two- 52

step approach to our EEG analysis. First, we used decoding 53

to determine how and when suppression differed, in general, 54

from retrieval; thus, using data from all EEG sensors, we 55

applied multivariate EEG analysis to compare retrieval and 56

retrieval-suppression manipulations to a perceptual baseline 57

condition, in which neither retrieval nor suppression had oc- 58

curred. Pairwise condition-level decoding should reveal neural 59

dynamics of retrieval and retrieval suppression, relative to the 60

no-retrieval baseline. We focused on the role of frontal theta 61

within the first 500 ms, given frontal theta power increase 62

has been related to inhibitory control processes (Anderson & 63

Hulbert, 2020; Cavanagh & Frank, 2014; Crespo-García et al., 64

2021; Nigbur et al., 2011). 65

We next used MVPA within each condition to isolate item- 66

specific cortical EEG patterns and to examine their develop- 67

ment over time in relation to the suppression process. We hy- 68

pothesized successful suppression and forgetting of unwanted 69

memories involves two key requirements. First, inhibitory 70

control needs to act rapidly to truncate retrieval before the 71

reminder elicits episodic recollection, reinstating the aversive 72
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TFig. 1. Experimental Procedure and Suppression-Induced Forgetting. (A) The emotional Think/No-Think task (eTNT) included three phases. 1) Encoding: Participants first

learned object-aversive scene stimulus pairings; and they also viewed some objects without any paired scene (i.e., Perceptual Baseline); 2) Think/No-Think (TNT) task:
Participants either retrieved (Think) or suppressed the retrieval (No-Think) of negative scene memories. Participants were also presented with Perceptual Baseline trials
without any retrieval; Think, No-Think, and Perceptual Baseline instructions were cued by a green, red, or blue colored box respectively, surrounding the cue object; 3) Recall:
Participants viewed object cues and verbally described their associated scenes. (B) Suppression-Induced Forgetting on Identification, Gist and Detail measures from the Recall
test. Suppression-induced forgetting can be seen in the lower recall of No-Think than Baseline items (n = 40).

scene. Second, inhibition must be sustained over time and ex-73

punge intruding memories from awareness, abolishing residual74

cortical reinstatements. The initial truncation of retrieval must75

proceed very rapidly; research on the time course of memory76

retrieval reveals a chronometry with multiple stages. Upon77

visually perceiving a memory cue, a cue-to-memory conversion78

process is thought to occur within 500 ms, along the occipital-79

temporal cortex pathway. Outputs of this process are thought80

to arrive in the hippocampus, initiating pattern completion81

at around 500 ms. Pattern completion is thought to then82

drive cortical reinstatement of the associated target memory83

during the 500-1500 ms window, at least for simple laboratory84

materials (Staresina et al., 2019; Staresina & Wimber, 2019;85

Treder et al., 2021; Yaffe et al., 2014).86

Based on these findings, we hypothesized that countering87

the emergence of item-specific cortical patterns would involve88

inhibitory control to target processes in the cue-to-memory89

conversion window (at around 500 ms) and also in the cortical90

reinstatement window (500-1500 ms). To understand how sup-91

pression modulates item-specific activity, we further examined92

4-8 Hz theta activity during the early 0-500 ms time window,93

given the roles of theta in sensory intake and feedforward94

information flow originating from the sensory cortex (Bastos95

et al., 2015; Colgin, 2013). To track reinstatement, we focused96

on 9-12 Hz alpha activity in the 500-1500 ms window, given97

alpha activity’s role in working memory maintenance and re-98

instatement (Fellner et al., 2020; Jensen et al., 2002). By99

comparing how item-specific cortical patterns unfold over time100

between the retrieval and the retrieval suppression conditions,101

we gain a window into the timeline for how inhibitory control102

affects the recollection of individual memories.103

We found that suppressing retrieval enhanced early theta104

control and began to attenuate item-specific cortical patterns105

within the first 500 ms, likely disrupting the perception-to-106

memory conversion processes. Critically, retrieval suppression107

weakened and ultimately abolished item-specific cortical pat-108

terns during the 500-1500 ms memory reinstatement window in109

a sustained manner. These results were especially pronounced110

among participants who successfully forgot the unpleasant111

scenes that they suppressed; in contrast, less successful for-112

getting was associated with insufficient mobilization of early113

theta control mechanisms, and relapse of cortical patterns for 114

unwelcome content during the full suppression window. 115

Results 116

Suppressing Retrieval Induces Forgetting of Emotional Mem- 117

ories. Following the emotional Think/No-Think (TNT) task, 118

participants completed a cued recall test during which they 119

verbally described the aversive scene that they thought was 120

linked to each of the cue objects. We coded and scored ver- 121

bal descriptions on Identification, Gist and Detail (see Meth- 122

ods). Each of these three scores was submitted to a one-way 123

repeated-measure (Think, No-Think and Baseline) analysis 124

of variance (ANOVA). Results showed a significant condition 125

effect on Identification F(1.87,72.93) = 7.35, p = .002; Detail 126

(F(1.93,75.2) = 13.79, p < .001 and Gist (F(1.92,74.95) = 127

6.22, p = .004). Planned contrasts comparing Baseline and 128

No-Think conditions confirmed that participants showed sig- 129

nificant suppression-induced forgetting on Identification, t(39) 130

= -2.07, p = .045, dz = 0.33, and Details, t(39) = -2.16, p = 131

.037, dz = 0.34, whereas the forgetting effect on Gist was not 132

significant t(39) = -1.58, p = .123, dz = 0.25, see Figure 1B). 133

Stopping Retrieval is Distinct From Not-Retrieving. We next 134

sought to identify EEG activity tied to stopping retrieval. To- 135

wards that end, we examined EEG activities that distinguished 136

No-Think, Think, and Perceptual Baseline (i.e., no-retrieval) 137

conditions. In the time domain, condition-level multivariate 138

decoding not only distinguished retrieval suppression from 139

voluntary retrieval (NT vs. T, pcorrected < .001, Figure 2C, 140

purple), but also from non-retrieval in our perceptual baseline 141

condition (NT vs. PB, pcorrected < .001, Figure 2C, red). These 142

differences imply that unique cognitive operations contributed 143

during retrieval suppression, consistent with the involvement 144

of an active stopping mechanism. Differences between No- 145

Think and Think conditions emerged as early as 140 ms and 146

persisted throughout the entire trial period until ~3000 ms. In 147

addition, we also could distinguish retrieval from non-retrieval 148

(T vs. PB, pcorrected < .001, Figure 2C, green). At least some 149

of the latter decoding difference arose from EEG correlates of 150

active retrieval processes during the Think condition: decoding 151

2 | https://doi.org/10.1101/2021.10.17.464746 Lin, Chen, Yao, Anderson, & Hu
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Fig. 2. Decoding Approaches Diagram and Condition-level Time-domain EEG Decoding Results. (A-B) An illustration of trial flow in the EEG-based eTNT task, and the logic of
decoding analyses. (C) Condition-level decoding based on time domain EEGs revealed significant differences in all three pairwise comparisons. Colored lines along x-axis
indicate significant clusters (permutation cluster corrected): No-Think vs Perceptual Baseline, 40-2460 ms, pcorrected < .001; Think vs Perceptual Baseline, 40-2800 ms, pcorrected

< .001; Think vs No-Think, 140-2960 ms, pcorrected < .001. Shaded areas indicate standard errors of the mean (S.E.M). (D) Time domain Think vs. Perceptual Baseline decoding
accuracies during the 500-3000 ms window was positively correlated with the enhancement of Think item recall on the final recall test, on the Identification score ((Think –
Baseline)/Baseline, or the recall benefit, proportional to baseline).

Lin, Chen, Yao, Anderson, & Hu Preprint Submitted to BioRxiv | December 16, 2021 | 3
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Fig. 3. The Condition-Level Time-Frequency Domain Decoding. (A-C) Condition-level time-frequency decoding results. Frequency is log scaled with the colorbar denoting
decoding accuracy. Black outlined highlight significant clusters against chance level (both cluster and permutation αs are set at 0.05). (D-F) Decoding accuracies in A-C are
averaged on theta (4-8 Hz) and alpha (9-12 Hz) bands. Lines at the bottom denote significant clusters of averaged accuracy against chance level (50(G) The alpha-based
No-Think vs. Perceptual Baseline decoding accuracies during 1,000-2,000 ms predicted later suppression-induced forgetting (i.e., higher decoding predicted a more negative
score, or higher forgetting). (H) Theta power within 0-500 ms distinguished NT vs. PB over frontal and posterior brain regions in a channel searchlight decoding analysis.
Significant electrodes were cluster corrected and are highlighted. (I) Theta power averaged from 200-400 ms was higher in NT than T. The increased theta power showed a
frontal-central distribution. Significant electrodes were cluster corrected and are highlighted.

accuracies from 500-3000ms during the Think vs. Perceptual152

Baseline analysis predicted retrieval-induced facilitation of153

Think items in the Identification measure, r = 0.33, p =.036;154

and in the Detail measure, r = 0.33, p =.041 (Figure 2D, also155

see Figure S2A).156

Retrieval suppression could also be distinguished from re-157

trieval and passive viewing based on time-frequency domain158

EEGs. Between condition decoding revealed differences among159

all pairwise comparisons (Figure 3A-F). Consistent with an160

early, active control process associated with suppression, we161

found, within the first 500 ms, significant NT vs. PB decoding162

in 4-8 Hz theta activity over the frontal and posterior regions163

(Figure 3E, 3H). This significant decoding continued through-164

out the 3000 ms epoch. Theta power differences contributed to165

this decoding: we found that during the 200-400 ms window,166

retrieval suppression (vs. retrieval or passive viewing) led to167

enhanced midline and right prefrontal theta power (NT > T,168

pcorrected = .007, Figure 3I; NT > PB, pcorrected = .002, Figure 169

S1G). After this early theta enhancement, suppression was 170

associated with reduced theta power from 500 to 3000 ms (NT 171

< T, theta: pcorrected = .004, NT < PB, theta: pcorrected < 172

.001). 173

Retrieval suppression also could be distinguished based on 174

alpha activity, and such effects were enduring. Indeed, 9-12 Hz 175

alpha activity drove condition-level decoding performance be- 176

tween 500 to 3000 ms (Figure 3D-F) with retrieval suppression 177

reducing alpha (NT <T, pcorrected < .001; NT<PB, pcorrected 178

= .002, Figure S1A-F). Based on a recent study indicating 179

that a 1000-2000 ms alpha power reduction may reflect re- 180

duced rehearsal during memory control (Fellner et al., 2020), 181

we hypothesized that these alpha power reductions may have 182

behavioral implications. Strikingly, during the same 1000-2000 183

ms as in prior research, the ability to decode NT versus PB 184

based on alpha activity predicted suppression-induced forget- 185

4 | https://doi.org/10.1101/2021.10.17.464746 Lin, Chen, Yao, Anderson, & Hu
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ting on our Identification measure (r = -0.34, p =.034, Figure186

3G, also see Figure S2B). This negative correlation suggests187

that reduced alpha power contributed to subsequent forget-188

ting of suppressed content. In contrast, whereas alpha-based189

NT vs. PB decoding accuracies predicted suppression-induced190

forgetting, the ability to decode T from PB based on alpha191

power predicted retrieval-induced facilitation for Think items,192

with the difference of these two correlations being significant193

(Detail: z = 2.06, p =.039; Figure S2C). Together, these194

findings suggest that increases in early theta power and reduc-195

tions in later theta/alpha power may be hallmarks of active196

suppression that make it qualitatively distinct from simply197

not-retrieving.198

Spatial Patterns in EEG Discern Individual Episodic Memo-199

ries During Retrieval. Observing the suppression of individual200

memories requires an index sensitive to brain activity unique201

to each memory item so that the impact on suppression on202

that index may be tracked. We hypothesized that the spatio-203

temporal pattern of scalp-EEG as participants thought about204

each scene may contain information sufficient to distinguish205

that specific scene from all the others. To test this hypothe-206

sis, we performed a decoding analysis on scalp-EEG patterns207

during Think trials, during which participants actively re-208

instated associated scenes. Consistent with our hypothesis,209

time-domain EEGs distinguished between individual scene210

memories across the entire 0-3000 ms window (Figure 4A,211

pcorrected < .001). In sharp contrast, for Perceptual Baseline212

trials, above-chance decoding of individual items arose only213

in the 0-500 ms (to be precise, 60-640 ms, pcorrected < .001),214

but not in the 500-3000 ms window (Figure 4C). To directly215

compare item-level decoding between retrieval and PB, we216

repeated the analyses with 6 randomly sampled items from the217

Think condition, to match the item number in the Perceptual218

Baseline (see Methods). We found that Think trials showed219

higher item-level decoding accuracies than Perceptual Baseline220

trials during the 360-1180 ms (pcorrected < .001) and 1220-1540221

ms window (pcorrected = .022, Figure 4K, purple lines).222

Successful decoding of individual items in the early time223

window (0 – 360ms) likely reflects visual processing of unique224

object retrieval cues, which are present both for the object-225

scene pairs used in the Think condition, and in the single226

objects used in the PB condition. In the later 360-1540 ms227

time window, however, higher decoding during Think trials228

would need to be driven by an item-specific processing present229

in the Think condition but not in the PB condition. One230

possibility is that this later item-specific effect in the Think231

condition may reflect the reinstatement and maintenance of232

unique unpleasant scenes associated to the object cue, which233

may have gradually begun to emerge in awareness as they234

were recollected. Another possibility, however, is that item-235

level decoding in the Think condition may simply reflect more236

sustained attention to the unique object cues in that condition,237

relative to the PB condition, for which participants may have238

correctly concluded that retrieval was unnecessary.239

To distinguish these possibilities, we examined brain regions240

giving rise to above-chance decoding during Think trials using241

searchlight decoding (see Methods). If greater decoding of242

individual items in the Think condition reflected sustained243

attention on object cues, successful decoding may be restricted244

to visual processing regions involved in object perception.245

Indeed, during the first 500 ms, occipital EEGs primarily246

drove the significant decoding in general, consistent with a 247

primary role of visual-perceptual cue processing (Figure 4D). 248

In contrast, during the latter 500-3000 ms interval, significant 249

decoding rested on a distributed set of regions implicated in 250

memory retrieval such as the right prefrontal and parietal- 251

occipital cortex (Figure 4E). This finding suggests that item- 252

level decoding beyond the first 500 ms is not dominated by 253

object cue attention, but rather by the reinstatement of the 254

associated scene memories. Converging with this possibility, 255

item-level decoding performance during the latter 500-3000 256

ms time window predicted later performance on the Detail 257

measure of scene memory (r = 0.34, p = .034, Figure 4J), 258

whereas decoding during the early 0-500 ms time window did 259

not (r = 0.01, p = .946). 260

Unlike during Think trials, the same searchlight analysis 261

during Perceptual Baseline trials showed that significant de- 262

coding in the 0-500ms window arose over a small cluster of 263

occipital electrodes. The restriction of decoding success to 264

occipital cortex suggests that classification hinged on visual 265

object processing during that period (Figure 4H). After this 266

initial window, the latter part of the trial from 500-3000 ms 267

showed no significant decoding at any electrode (Figure 4I; 268

similar searchlight results were obtained when using 0-360 and 269

360-1540 ms windows, see Figure S3A). 270

In sum, during retrieval, time-resolved EEG patterns sug- 271

gest a staged cued-recall process: during the 0-500 ms window, 272

EEG patterns could discern perceived items over occipital 273

regions; during 500-3000 ms, EEG patterns could distinguish 274

among retrieved items over fronto-parietal-occipital regions. 275

Furthermore, higher item-level decoding accuracies predicted 276

better scene memory only in this latter, 500-3000 ms time 277

window. 278

Suppressing Retrieval Weakens and Abolishes Item-specific 279

Cortical Patterns. Having established that the retrieval of indi- 280

vidual scene memories can be indexed and tracked, we next 281

sought to use this index to determine how and when suppres- 282

sion affected cortical patterns relating to individual memories. 283

We therefore examined whether retrieval suppression modu- 284

lated item-specific cortical EEG patterns. 285

We hypothesized that item-level decoding during No-Think 286

trials would be possible initially, as participants focused their 287

attention on the visually unique reminder cues, but that sup- 288

pression would limit successful decoding throughout the re- 289

mainder of the trial. Indeed, in the No-Think condition, 290

item-level decoding accuracy was above chance initially, and 291

remained so until 1160 ms (pscorrected < .028); decoding ac- 292

curacy then dropped to chance-levels for the remainder of 293

the 3000ms trial. Consistent with the Think and Perceptual 294

Baseline analyses, we used a priori defined time windows from 295

0-500 and 500-3000 ms to characterize the EEG scalp distribu- 296

tions contributing to decoding success. During the 0-500 ms 297

window, item-level decoding was driven by occipital activity, 298

resembling the EEG distributions found in the Perceptual 299

Baseline condition during the same window (Figure 4F, 4H). 300

Strikingly, during the 500-3000 ms, there were no brain regions 301

that contributed significantly to item-level decoding (Figure 302

4G), suggesting that suppression had abolished evidence for 303

cortical reinstatement of scene memories. 304

In addition to scalp EEG distributions revealed by the 305

channel searchlight analysis, confusion matrices of item-level 306

decoding provided converging evidence supporting the hypoth- 307
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Fig. 4. Item-level Time Domain Decoding. (A-C) The item-level decoding patterns (averaged across participants) in each retrieval condition. Lines at the bottom indicate
significant time clusters against chance level, with permutation cluster correction (αs = 0.05). (D-I) Channel searchlight analyses of time domain decoding during an early
(0-500 ms) and a later time window (500-3000 ms). The colorbar indicates decoding accuracy. Electrodes with significant decoding accuracies are highlighted (permutation
cluster corrected, αs = 0.05). (J) During Think trials, decoding accuracies averaged on 500-3000 ms predicted the number of details recalled from emotional scenes. (K)
Item-level decoding in the Think condition (using 6 resampled items) is higher than it is in the Perceptual Baseline condition from 360-1180 ms, pcorrected < .001 and from
1220-1540 ms, pcorrected = .022. Lines at the bottom indicate cluster-corrected significant time clusters against the chance level (green and blue for Think and Perceptual
Baseline) or the difference between the two conditions (purple). (L) Item-level decoding in the No-Think condition (using 6 resampled items) is not significantly different from
decoding in the Perceptual Baseline condition. Lines at the bottom indicate significant time clusters against the chance level (red and blue for No-Think and Perceptual Baseline
conditions, respectively). (M) Retrieval suppression significantly reduced item-level decoding accuracies from 420-600 ms compared to retrieval (Think condition), with the right
panel showing channel searchlight analyses on this time window.
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esized stages of retrieval suppression: we observed significant308

above-chance item-specific classifications in all three condi-309

tions during the first 500 ms, when cue-processing might be310

expected to predominate; in contrast, distinctive classification311

patterns remained only in the Think condition during 500-312

3000 ms (Figure S3C-E). Thus, suppression reduced cortical313

patterns during No-Think trials to the extent that they were314

as uninformative as items in our perceptual baseline condition,315

in which no scene retrieval was possible.316

To precisely characterize of the temporal dynamics of re-317

trieval suppression, we contrasted the time-dependent evolu-318

tion of item-specific cortical patterns between retrieval suppres-319

sion and both the retrieval and perceptual baseline conditions.320

A direct comparison of Think vs. No-Think item-level de-321

coding revealed that retrieval suppression reduced decoding322

accuracies from 420 to 600 ms (pcorrected = .044, Figure 4M323

left panel). Searchlight analyses during 420-600 ms revealed324

that, whereas voluntary retrieval engaged item-specific brain325

activity over frontal-parietal-occipital regions, retrieval sup-326

pression was only associated with occipital activity (Figure327

4M right panel). When No-Think trials were directly com-328

pared to Perceptual Baseline trials (using 6 randomly sampled329

items from the No-Think condition), there were no significant330

decoding accuracy differences during the entire 0-3000 epoch331

(none of the differences survived permutation correction, see332

Figure 4L).333

Reduced decoding accuracy for individual No-Think items334

in the 420-600ms window suggests that the retrieval stopping335

process may begin to exert its first effects within this window,336

a possibility consistent with findings from our condition-level337

decoding analyses. We next sought to determine whether338

prefrontal-control processes were linked to suppressed item-339

level decoding. Consistent with this possibility, we found340

that in the No-Think (vs. Think) trials, reduced item-level341

decoding was preceded by enhanced 200-400 ms theta power342

over midline and right prefrontal cortex (Figure 3I). Critically,343

theta power elevation across this region positively correlated344

with the 420-600 ms decoding accuracy reduction (r = 0.30,345

p = .064, Figure S3F), suggesting that processes indexed by346

higher theta power (No-Think > Think) contributed to lower347

item-specific decoding accuracies (No-Think < Think).348

Together with the evidence for suppression-specific patterns349

in the condition level analysis, these item-level decoding results350

reveal a precise timeline of how retrieval suppression unfolded:351

inhibitory control was engaged within the first 500 ms upon352

encountering a unwelcome reminder cue, presumably before353

the cue-to-memory conversion process completed, to obstruct354

retrieval and prevent reinstatement from happening. This early355

control weakened, and eventually abolished memory-specific356

cortical patterns during 500-3000 ms.357

Rapid and Sustained Suppression of Individual Memories358

Led to Their Forgetting. To understand how the temporal dy-359

namics of retrieval suppression influenced later forgetting of360

suppressed content, we divided participants into High- vs. Low-361

Suppression Groups based on a median-split of suppression-362

induced forgetting scores. We focused on below-baseline for-363

getting (i.e., NT-minus-BL Detail scores) using our detail364

measure of scene recall. We tested the hypothesis that suc-365

cessful suppression-induced forgetting was associated with a366

greater reduction in decoding accuracy during No-Think trials367

compared to Think trials, compared to unsuccessful forget-368

ting. In the High-Suppression group (Figure 5A), suppression 369

significantly reduced item-specific decoding accuracy during 370

No-Think (vs. Think) trials during two time windows: 300-680 371

ms (pcorrected = .006) and 1140-1400 ms (pcorrected = .031). 372

By contrast, in the Low-Suppression group (Figure 5B), the 373

same comparison revealed no NT vs. T decoding accuracy 374

differences, indicating that evidence for item-specific decoding 375

remained possible for this group, despite their efforts to sup- 376

press. In the high forgetting group, the observed differences 377

may reflect an early disruption of cue-to-memory conversion 378

processes occurring at around 500 ms, and a later weakening 379

of item-specific cortical reinstatement between 1000-1500 ms. 380

Corroborating a role of early and timely suppression in forget- 381

ting, item-level decoding accuracy during the early 300-680 ms 382

window predicted later suppression-induced forgetting across 383

all participants (r = 0.35, p = .027, Figure 5C). Thus, the 384

more effectively participants suppressed unwanted memories 385

during the 300-680 ms window, the more successful was the 386

later forgetting of scene details. 387

We next compared item-level decoding accuracy between 388

the No-Think (using 6 randomly sampled items) and Per- 389

ceptual Baseline conditions in the Low and High-Suppressor 390

groups. Strikingly, we found no between-condition differences 391

in the High-Suppression Group (Figure 5D), indicating that 392

suppression reduced pattern information so effectively that 393

the brain activity contained no evident item-specific content, 394

mimicking those trials in which there was actually no scene to 395

reinstate. In contrast, participants from the Low-Suppression 396

Group showed significantly higher decoding accuracies during 397

No-Think trials compared to Perceptual Baseline trials, pri- 398

marily toward the end of the suppression epoch (i.e., 2300-2560 399

ms, pcorrected = .029, Figure 5E, purple dashed outline). Thus, 400

less successful forgetting was associated with relapses in the 401

activation of suppressed content during sustained control of 402

unwanted memories. Together, these results highlight that not 403

only early and rapid, but also sustained control are important 404

in successful suppression-induced forgetting. 405

Theta and Alpha Oscillations Track Item-Level Perception and 406

Reinstatement Processes, Respectively. We sought converging 407

evidence for the active suppression of individual memories 408

by tracking item-specific oscillatory activity in the theta and 409

alpha bands. Theta and alpha activity have been implicated in 410

perceptual and memory-related processes, such that theta may 411

reflect sensory intake and hippocampo-cortical communication 412

loops (Bastos et al., 2015; Colgin, 2013), and alpha may 413

track neocortex-dependent memory reinstatement processes 414

(Staresina et al., 2019; Staresina & Wimber, 2019). If so, 415

posterior theta activity may enable item-specific decoding of 416

the cue objects themselves, whereas alpha activity may enable 417

decoding of reinstated scenes. 418

In all three conditions, we found that theta activity in the 0- 419

500ms window over occipital regions significantly distinguished 420

among individual items, consistent with theta’s putative role 421

in visual processing of individual cue objects (pscorrected < .001, 422

Figure 6A-C, also see Figure 6D-G). During the 500-3000 ms 423

window in which scene recollection could unfold, both theta 424

and alpha power drove significant decoding accuracy during 425

Think trials (theta: pscorrected < .027; alpha: pscorrected < .039, 426

Figure 6D). Critically, however, retrieval suppression during 427

No-Think trials abolished any evidence for item-specific decod- 428

ing based on theta or alpha band activity (Figure 6E). There 429
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Fig. 5. Item-level Decoding Results in High- and Low-Suppression Groups. (A, B) Comparisons between Think and No-Think item-level decoding in High-/Low-Suppression
Groups, respectively. In the High-Suppression Group, the Think vs. No-Think difference was significant during the 300-680 ms and 1140-1400 ms windows, whereas no
differences were found in the Low-Suppression Group. (C) Across both groups, the averaged decoding accuracy during the 300-680 ms. window positively correlated with
participant’s suppression-induced forgetting (i.e. No-Think - Baseline of the detail index). (D, E) Resampled item-level decoding comparisons between the No-Think and
Perceptual Baseline conditions in the High- and Low-Suppression Groups, respectively. In the High-Suppression Group, the No-Think condition did not differ from the Perceptual
Baseline condition in item-level decoding accuracy, despite both showing above chance decoding within the 0-500 ms window. In the Low-Suppression Group, in contrast, a
significant difference between the No-Think and the Perceptual Baseline conditions was observed during the 2300-2560 ms window. Colored bars at the bottom of each figure
denote time clusters that were significantly above chance (permutation corrected, one-sided αs = 0.05). Purple dashed outlines denote significant time clusters between
conditions/groups (permutation corrected, two-sided αs = 0.05).
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Fig. 6. Item-level Time-Frequency Domain Decoding. (A-C) Item-level time-frequency decoding results. Frequency is log scaled and the colorbar denotes decoding accuracy.
The black outline highlights significant clusters against chance levels (both cluster α and permutation α are 0.05, one-sided). (D-F) Decoding accuracies in A-C are averaged
on theta and alpha bands. Horizontal bars denote significant clusters of the band-averaged accuracies against chance level (cluster corrected, one-sided αs = 0.05). (G)
Item-level theta searchlight during the 0-500 ms window showed an occipital distribution in all three conditions. Significant channels are highlighted (permutation cluster
corrected with one-sided αs = 0.05). (H) Item-level alpha searchlight during the 1500-2000 ms window showed that only in the Think condition was alpha power able to
distinguish among items. The alpha searchlight decoding in the Think condition originated from the posterior region. Significant channels are highlighted (permutation cluster
corrected with one-sided αs = 0.05).
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was short-lived theta-driven decoding in Perceptual Baseline430

trials, which may reflect occasional perceptual processing of431

objects (theta: pscorrected < .011, Figure 6F). Channel search-432

light analyses during the 500-3000 ms window revealed that433

alpha activity over the occipital-parietal region contributed434

to decoding performance in the Think condition, but did not435

in either the No-Think or Perceptual Baseline conditions (see436

Figure 6H). These findings support the possibility that alpha437

activity is linked with scene-specific memory reinstatement438

processes and not simply to object perception. If so, the lack439

of significant alpha-based decoding in No-Think trials reflects440

the abolition of memory reinstatement processes arising due441

to active suppression.442

Discussion443

Suppressing memory retrieval requires effort; it is not simply444

neglecting to engage retrieval when an unwelcome reminder445

appears, but instead involves an active inhibition process (An-446

derson & Hulbert, 2020; Wimber et al., 2015). Applying447

multivariate pattern analyses during the think/no-think task,448

we observed, for the first time, how individual aversive memo-449

ries are suppressed in real time. Our precise chronometry of450

retrieval suppression provides new knowledge about the time451

windows and neural activity critical to achieving successful for-452

getting. We found that effective forgetting is associated with 1)453

the rapid deployment of inhibitory control in suppressing cor-454

tical patterns within the first 500 ms, supported by enhanced455

midfrontal theta activity during efforts to stop retrieval; and456

2) sustained control applied to abolish item-specific cortical457

EEG patterns reflected in the spatial pattern of theta and458

alpha activity during the 500-3000 ms window.459

Three findings suggest that an early, active control process460

truncates retrieval of highly specific, individual memories, in-461

ducing later forgetting. First, when a reminder cue appeared,462

within 500 ms retrieval suppression enhanced midfrontal and463

right prefrontal theta activity relative to active retrieval and464

also relative to a perceptual baseline condition in which scene465

retrieval was impossible. Given evidence linking frontal mid-466

line theta and inhibitory control (Cavanagh & Frank, 2014;467

Crespo-García et al., 2021; Nigbur et al., 2011), this find-468

ing is consistent with the possibility that attempts to stop469

the retrieval process engaged inhibitory control. This finding470

suggests a rapid onset of inhibitory control in the face of an471

unwelcome reminder, but does not, by itself, link that control472

process to the successful exclusion of unwanted memories from473

awareness.474

Second, whereas we detected significant item-specific brain475

activity during active retrieval, retrieval suppression reduced476

the ability to detect individual items during the 420-600 ms477

time window. The ability to detect reduced item-specific ac-478

tivity in such an early time window indicates that suppression479

rapidly interrupts the retrieval process. Estimates based on in-480

tracranial recordings suggest that beginning at around 500 ms,481

hippocampus-dependent pattern completion would normally482

trigger cortical reinstatement of target memories, accompanied483

by vivid recollection (Colgin, 2016; Lavenex & Amaral, 2000;484

Staresina & Wimber, 2019). Given this timing, successful485

retrieval suppression ideally should target prior to this time486

window to pre-empt or truncate the cue-to-memory conversion487

processes, preventing memories from being reinstated. Indeed,488

our putative index of inhibitory control predicted reduced item-489

specific EEG activity: we found that elevated theta power in 490

the 200-400 ms window predicted later reductions of item-level 491

decoding accuracy in the 420-600ms window. These findings 492

suggest that enhanced inhibitory control disrupted the cue-to- 493

memory conversion process to prevent aversive memories from 494

being retrieved, but it does not link such changes in cortical 495

reinstatement to later forgetting of the suppressed content. 496

Third, we found that reduced item-specific cortical pat- 497

tern information during this early time window predicted later 498

suppression-induced forgetting. Specifically, whereas those par- 499

ticipants showing high suppression-induced forgetting exhib- 500

ited significantly reduced item-level decoding accuracies during 501

suppression, compared to retrieval in the 300-680 ms win- 502

dow, Low-Suppression participants did not. In general, across 503

all participants, reduced No-Think item decoding accuracies 504

within the 300-680 ms window predicted later suppression- 505

induced forgetting. These results link the early engagement 506

of control not only to reduced reinstatement, but also to an 507

increased capacity to forget the suppressed content. Given 508

that hippocampus-dependent pattern completion processes 509

emerge at around 500 ms (Staresina & Wimber, 2019), this 510

finding again suggests that for successful forgetting to occur, 511

top-down inhibitory control should be engaged quickly be- 512

fore and during the cue-to-memory conversion time window, 513

preventing cortical reinstatement. 514

The temporal evolution of item-specific cortical patterns 515

suggests that whereas rapid control is important to successful 516

forgetting, sustained control also is necessary. Whereas re- 517

trieval suppression weakened the ability to detect item-specific 518

cortical patterns starting from ~400 ms after cue-onset, indi- 519

vidual memories could still be identified until 1200 ms post-cue. 520

Residual item-specific cortical patterns during the 420-1200 521

ms window clearly call for sustained control to ensure that 522

unwanted memories are suppressed. The ability to detect item- 523

specific cortical patterns was fully abolished by 1200 ms for 524

the remainder of the 3000ms trial. The maintenance of control 525

over this longer time period appears to be reflected in reduced 526

alpha power throughout the trial. Together, these temporal 527

characteristics reveal a timeline for the suppression of aversive 528

scenes: early control processes truncate retrieval during the 529

perception-to-memory conversion time window (e.g., ~420- 530

600 ms), with sustained control processes down-regulating 531

unwanted memories (e.g., ~1200 ms), eventually abolishing 532

item-specific cortical patterns (1200-3000 ms). 533

Two additional findings underscore the importance for sus- 534

tained control in the successful forgetting of unwanted mem- 535

ories. Although early control clearly was instrumental to 536

successful forgetting, we also found evidence that activity in 537

later time windows was also functionally relevant. First, those 538

participants showing higher suppression-induced forgetting 539

showed significantly reduced item-level decoding accuracies 540

during suppression than during retrieval in the 1140-1400 ms 541

time window, suggesting the functional importance of sus- 542

tained control. Second, low-suppression participants showed 543

evidence of an ironic rebound effect later in the trial: retrieval 544

suppression was associated with significantly higher decoding 545

accuracies than our perceptual baseline trials in the 2600-2800 546

ms time window. This apparent rebound effect in cortical 547

reinstatement suggests that participants who later showed less 548

successful forgetting suffered relapses in controlling unwanted 549

memories, particularly towards the end of retrieval suppres- 550
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sion (van Schie & Anderson, 2017). Taken together, these two551

findings illustrate that successful forgetting requires sustained552

suppression of individual memories during the prolonged cor-553

tical reinstatement time window.554

Our item-level decoding results during voluntary retrieval555

trials (i.e., Think trials) provide converging evidence for our556

staged view of how cued memory recall unfolds. To determine557

whether sustained item-level decoding during Think trials558

might simply reflect persisting attention to individual object559

cues, we showed that 1) the early (0-500 ms) vs. late (500-3000560

ms) decoding patterns were characterized by distinct EEG561

spatial distributions, and 2) only the 500-3000 ms item-level562

decoding accuracy predicted more detail of scene recall of563

Think items on the later test. These results suggest that564

whereas the early decoding pattern reflects perceptual pro-565

cesses acting on item-specific cues, the later decoding pattern566

likely reflects the successful recollection of the accompanying567

scene. Consistent with this interpretation, both theta and568

alpha power contributed to item-level decoding during volun-569

tary retrieval, with an early onset of occipital theta activity570

followed by parietal-occipital alpha activity. Theta and alpha571

activities have been implicated in perceptual and memory-572

related processes, such that theta may reflect sensory intake573

and hippocampo-cortical communication loops (Bastos et al.,574

2015; Colgin, 2013). Relatedly, linking behavioral oscillation575

and neural oscillation, a recent study demonstrated a promi-576

nent role of theta rhythm in memory retrieval (Ter Wal et577

al., 2021). Regarding alpha, previous research suggests that578

alpha may track neocortex-dependent memory reinstatement579

processes (Staresina et al., 2019; Staresina & Wimber, 2019)580

Decoding patterns during Perceptual Baseline trials provided581

converging support for this account: when participants viewed582

object cues that lacked any associated scene memory, only583

occipital theta activity in the 0-500ms window drove signifi-584

cant item-level decoding, ruling out any contribution of scene585

retrieval.586

If the foregoing staged view of retrieval is correct, then587

item-specific decoding based on alpha-band activity after ini-588

tial cue processing may reflect the reinstatement of individual589

scenes. Indeed, previous research has found that memory rein-590

statements are associated with alpha oscillations. For example,591

in a directed forgetting task, Fellner et al. (2020) reported al-592

pha power increases 1000-2000 ms following to-be-remembered593

cues, which were associated with selective rehearsal (see also594

Bäuml et al., 2008; Hanslmayr et al., 2012; Xie et al., 2020).595

Mirroring this, we found that voluntary retrieval enhanced596

alpha power during the same 1000-2000 ms window when rein-597

statement of the associated scene would be expected (Figure598

S1H-M). If this interpretation is correct, then the reduced599

alpha power relative to our perceptual baseline condition (and600

alpha-based item-level decoding performance), likely reflects601

the outcome of suppressing scene reinstatement. Critically,602

higher decoding based on alpha activity during retrieval sup-603

pression, relative to the perceptual baseline condition predicted604

later suppression-induced forgetting. Suppression-induced al-605

pha power reductions may reflect reduced memory reinstate-606

ment (Hanslmayr et al., 2012; Waldhauser et al., 2015), which607

contributed to episodic forgetting.608

Taken together, our findings show that for successful re-609

trieval suppression and forgetting, inhibitory control needs to610

be both fast and sustained. On the one hand, early enhanced611

frontal theta disrupted cue-to-memory conversion, truncat- 612

ing the reinstatement of individual aversive scene memories 613

within the first 500 ms upon seeing the cues. On the other 614

hand, sustained control weakened and eventually abolished 615

item-specific cortical EEG patterns during the 500-3000 ms 616

time window, reflected in reduced alpha activity. In contrast, 617

both diminished early control and relapses during later sus- 618

tained control compromised successful voluntary forgetting of 619

suppressed content. By tracking the precise timing and neural 620

dynamics of retrieval suppression in modulating individual 621

memories, our results may inform future research on when 622

and how to intervene during retrieval suppression to improve 623

people’s ability to forget unwanted memories. 624

Materials and Methods 625

Experimental Subject Details. Fourty-one participants (mean 626

age = 19.57, age range: 18-23 years, 26 females) were recruited 627

from the University of Hong Kong. One participant was 628

excluded due to non-compliance of task instructions (details 629

see Materials and Procedure). Ethical approval was obtained 630

from the Human Research Ethics Committee of The University 631

of Hong Kong. 632

Materials and Procedure. We used 42 object-scene picture 633

pairs from Küpper et al. (2014). Scenes depict aversive 634

contents such as natural disasters, assault, injury, etc. Each 635

object resembled an item from its paired negative scene, thus 636

establishing naturalistic and strong associations. Six pairs were 637

used for instruction and practice purposes. The remaining 638

36 pairs were equally divided into 3 sets, with 12 pairs in 639

each of three following conditions: Think, No-Think, and 640

Baseline. Picture pairs used in the three conditions were 641

matched on valence and arousal, and were counterbalanced 642

across participants. Another 6 objects without any paired 643

scenes were used as Perceptual Baseline trials, which did 644

not involve any memory retrieval. Participants completed 645

the following sessions in order: Encoding, Think/No-think 646

(TNT) and Cued Recall. At the end of the study, participants 647

completed a 3-item, instruction compliance questionnaire. 648

Encoding. Participants were presented with 42 object-scene 649

pairings, plus 6 objects from Perceptual Baseline. Each object- 650

scene pair was presented on an LCD monitor for 6 s with an 651

inter-trial-interval (ITI) of 1s. Participants were instructed 652

to pay attention to all the details of each scene, and to asso- 653

ciate the left-sided object and the right-sided scene. They next 654

completed a test-feedback session, in which each object was pre- 655

sented up to 4 s until participants pressed a button indicating 656

whether they could recall the associated scene or not. If par- 657

ticipants gave a ‘yes’ response, they were presented with three 658

scenes from the learning phase and needed to identify the cor- 659

rect one within another 4 s. Regardless of accuracy, the correct 660

pairing would be presented for 2.5 s. This test-feedback cycle 661

repeated until participants reached 60% accuracy. Twenty-six 662

participants reached this criterion in the first cycle, 13 par- 663

ticipants in two, and 1 in three. Following the test-feedback 664

cycles, participants completed a recognition-without-feedback 665

test, so as to confirm that items from different conditions were 666

encoded at comparable levels before the TNT session (ps > 667

.104). 668
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TNT. Participants were presented with 24 objects from the 36669

object-scene pairings, with 12 objects in each of the Think or670

No-think conditions, respectively. The remaining 12 objects671

were not shown in the TNT and were used in the Baseline672

condition. These 24 objects were presented in either yellow- or673

blue-colored frames indicating think and no-think conditions,674

with colors counterbalanced across participants. Six objects675

(without any pairing scenes) were presented in white-colored676

frames and served as Perceptual Baseline trials. Thus, 30677

unique objects were shown in the TNT session. Each object678

was presented 10 times, resulting in a total of 300 trials. Each679

trial began with a fixation cross (2-3s), followed by the object680

in a colored frame for 3s. The ITI was 1 s.681

For Think trials, participants were instructed to try their682

best to think about the objects’ associated scenes in detail,683

and to keep the scenes in mind while the objects remained684

on the monitor. For No-Think trials, participants were given685

direct-suppression instructions: they were told to pay full686

attention to the objects while refraining from thinking about687

anything. If any thoughts or memories other than the objects688

came to mind, they needed to try their best to push the689

intruding thoughts/memories out of their mind and re-focus690

on the objects. Participants were also prohibited from using691

any thought substitution strategies (i.e., thinking about a692

different scene). For Perceptual Baseline trials, participants693

were simply instructed to focus on the object.694

Cued Recall. Following the TNT session, participants were pre-695

sented with each of the 36 objects from Think, No-Think and696

Baseline conditions. Each object was presented at the center697

of the monitor, alongside a beep sound prompting participants698

to verbally describe the associated scenes within 15 s. The699

ITI was 3 s. Participants’ verbal descriptions were recorded700

for later scoring. Perceptual Baseline objects were not shown701

in this recall test because they were not paired up with any702

scenes.703

Cued Recall Analyses. Two trained raters who were blind to704

experimental conditions coded each of the verbal descriptions705

along three dimensions following the criteria used in in a706

previous study (Küpper et al., 2014), namely Identification,707

Gist and Detail. Each measure focused on different aspects708

of memories: Identification referred to whether the verbal709

description was clear enough to correctly identify the unique710

scene, and was scored as 1 or 0. Inconsistent ratings were711

resolved by averaging 0 and 1, resulting in a score of 0.5. Gist712

measured whether participants’ verbal descriptions contained713

critical elements pertaining to the scene’s main themes. Two714

independent raters identified two to four gists for each scene715

(Küpper et al., 2014). We scored gist as proportion, using716

the number of correct gists from participants’ verbal report717

divided by all possible gists for each scene. Detail measured718

how many correct meaningful segments were provided during719

the verbal description, and was scored on the number of details.720

Interrater agreement for the scoring of all three measures was721

high: Identification r = 0.71, Gist r = 0.90, Detail r = 0.86.722

EEG Recording and Preprocessing. Continuous EEGs were723

recorded during the TNT session using ANT Neuro eego724

with a 500 Hz sampling rate (ANT, The Netherlands), from725

64-channel ANT Neuro Waveguard caps with electrodes posi-726

tioned according to the 10-5 system. The AFz served as the727

ground and CPz was used as the online reference. Electrode728

impedances were kept below 20 kilo-ohms before recording. 729

Eye movements were monitored through EOG channels. 730

Raw EEG data were preprocessed in MATLAB using 731

EEGlab Toolbox (Delorme & Makeig, 2004) and ERPlab 732

Toolbox (Lopez-Calderon & Luck, 2014): data were first down- 733

sampled to 250 Hz, and were band-passed from 0.1 to 60 734

Hz, followed by a notch filter of 50Hz to remove line noise. 735

Bad channels were identified via visual inspection, and were 736

removed and interpolated before re-referencing to common 737

averages. Continuous EEG data were segmented into -1000 738

to 3500 ms epochs relative to the cue onset, and baseline 739

corrected using -500 to 0 ms as baseline period. Next, in- 740

dependent component analyses (ICAs) were implemented to 741

remove eye blinks and muscle artifacts. Epochs with remaining 742

artifacts (exceeding ± 100 µV) were rejected. The numbers of 743

accepted epochs used in all following analyses were compara- 744

ble across Think (Mean ± SD, 100.33 ± 11.57) and No-think 745

(103.18 ± 10.61) conditions. Valid trials number in Perceptual 746

Baseline is 56.58 ± 3.23. All EEG analyses were based on 61 747

electrodes, excluding EOG, M1, M2, AFz (ground) and CPz 748

(online reference). 749

Condition-/Item-level Decoding with Time Domain EEG. Decoding 750

analyses were conducted in MATLAB using scripts adapted 751

from (Bae & Luck, 2018), which used a support vector machine 752

(SVM) and error-correcting output codes (ECOC). The ECOC 753

model combined results from several binary classifiers for 754

prediction output in multiclass classification. 755

In condition-level decoding, we used one-vs-one SVMs to 756

perform pairwise decoding among the three conditions (Think 757

vs. Perceptual Baseline, No-Think vs. Perceptual Baseline, and 758

Think vs. No-Think). For Think vs. Perceptual Baseline and 759

No-Think vs. Perceptual Baseline condition-level decoding, 760

we first subsampled trials in T/NT to be comparable with 761

Perceptual Baseline so that each condition had about 56 trials. 762

We next divided EEG trials from each condition into 3 equal 763

sets and averaged EEG epochs within each set into sub-ERPs 764

to improve signal-to-noise ratio. The decoding was achieved 765

within each participant from -500 to 3000 ms using these 766

sub-ERPs in a 3-fold cross validation: each time 2 of the 767

3 sub-ERPs are used as training dataset with the condition 768

labels, and the remaining one was used as testing dataset. 769

After splitting training and testing datasets, sub-ERPs were 770

both normalized using the mean and standard deviation of 771

training dataset to remove ERP-related activity. This process 772

was conducted on every 20 ms time point (subsampled to 773

50 Hz), and repeated for 10 iterations. We were comparing 774

condition-level decoding accuracy against its chance level, 50%, 775

given two conditions were involved in each pairwise decoding. 776

For item-level decoding, we used one-vs-all SVMs to decode 777

each individual stimulus within each condition, separately. 778

Decoding procedures were the same as condition-level decoding. 779

Thus, the trial numbers of each stimulus are first matched 780

to the least one within each participant (at most 10 trials, 781

if no trial was rejected). Then, all trials of each stimulus 782

were divided into 3 sets before averaging and the 3-fold cross 783

validation. Both training dataset and testing dataset were 784

normalized using the mean and standard deviation of training 785

dataset. The decoding process was conducted on every 20 ms 786

time point and for 10 iterations (results remained the same 787

for up to 100 iterations, see supplementary Figure S3G). For 788

Think and No-Think conditions, the chance levels were 1/12 789
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(8.33%) given that there were 12 unique stimuli in each of these790

two conditions. For Perceptual Baseline trials, the chance level791

was 1/6 (16.67%).792

Given we had different item numbers in Perceptual Baseline793

(6 items) and Think/No-Think (12 items), in order to directly794

compare the decoding accuracy in Think or No-Think with795

Perceptual Baseline, we conducted a resampled decoding in796

Think and No-Think, respectively. The resampled decoding797

is similar to the normal decoding, except that during each798

iteration we randomly selected 6 out of all 12 items before799

dividing and averaging into 3 sets. Considering the random-800

ization used only half of the items, we increased iterations801

to 20 times. An item-level decoding with 20-iterations was802

also rerun in Perceptual Baseline, to be compared with the803

resampled decoding.804

Condition-/Item-level Decoding with Time-Frequency Domain EEG.805

Time domain EEG was wavelet transformed into time-806

frequency domain data in Fieldtrip Toolbox (Oostenveld et al.,807

2011) before decoding. Frequencies of interest increased loga-808

rithmically from 2.8 Hz to 30 Hz, resulting in 22 frequency bins.809

Wavelet cycles increased linearly along with frequencies from810

3 to 7. Then the decoding was conducted for each frequency811

bin data across time in the same procedure as described in812

Condition-/Item-level Decoding with Time Domain EEG (as813

if treating each frequency bin data as a time domain data).814

Channel Searchlight Decoding. Both condition- and item-level815

decoding used EEGs from all 61 channels as features. To816

examine which electrodes contributed the most to the decoding817

accuracy, we conducted a channel searchlight decoding using818

subsets of the 61 channels as features (Treder, 2020).819

Specifically, we first divided all channels into 61 neigh-820

bourhoods, centering each channel according to its location821

(conducted in Fieldtrip Toolbox (Oostenveld et al., 2011)822

via ft_prepare_neighbours() function using ‘triangulation’823

method). Immediately neighbouring channels were clustered824

together, resulting in 6.39±1.50 channel neighbours for each825

channel (with overlaps). Then the time domain EEG was826

averaged on time windows of interest, i.e., averaged on 0-500827

ms, 500-3,000 ms, etc., to inspect the decoding topographical828

distribution on different time windows. The rest of the proce-829

dure was the same as time domain EEG decoding: we divided830

data into 3 sets and averaged within each set before splitting831

training and testing datasets; then we normalized them using832

mean and standard deviation of training sets. Finally, the833

decoding was conducted with a 3-fold cross validation and834

10 iterations. Theta/alpha searchlight was conducted in the835

same way as time-domain searchlight, after averaging time-836

frequency power on respective oscillation range (theta: 4-8 Hz;837

alpha: 9-12 Hz).838

Time Frequency Analyses. Six electrode clusters were selected for839

Time Frequency analyses: left parietal (CP3/5, P3/5), parietal840

(Pz, CP1/2, P1/2), right parietal (CP2/4, P2/4), frontocentral841

(FC1/2, C1/2, FCz, Cz), left prefrontal (AF3, F3/5) and right842

prefrontal (AF4, F4/6).843

Time frequency transformation was performed using the844

same parameters as in decoding analyses in Fieldtrip (Oost-845

enveld et al., 2011), with additional decibel baseline normal-846

ization using power on -500 to -200 ms. We focus on the847

early theta power change on 200-400 ms which is indicator848

of inhibitory control (Cavanagh & Frank, 2014; Nigbur et al.,849

2011), and theta and alpha power change on a post hoc late 850

time window (500-3000 ms) following condition level decoding 851

results. 852

Correlation Analyses. We calculated Spearman’s Rho for all cor- 853

relations. In condition-level decoding, memory of Think and 854

No-think was normalized by subtracting and then divided by 855

Baseline memory, then correlated with time domain condition- 856

level decoding accuracy on 500-3000 ms. To investigate the 857

time course of these correlations, Spearman’s Rho was calcu- 858

lated at each time point. For condition-level alpha decoding, 859

we investigated correlation between memory and decoding 860

accuracy on 1,000-2,000 ms, the same time window reported 861

in Fellner et al. (2020). 862

In item-level time-domain decoding, we investigated the 863

correlations between decoding accuracy and absolute memory 864

score of the same condition, on 0-500 ms and 500-3000 ms, 865

respectively. To link item-level decoding with condition level 866

inhibitory control theta power change, we calculated correla- 867

tion between decoding accuracy difference between Think and 868

No-Think on 420-600 ms, and theta power difference between 869

Think and No-Think on 200-400 ms. 870

In the High- vs. Low-Suppression Grouping correlation, we 871

calculated correlation between decoding accuracy on 300-680 872

ms and No-Think minus Baseline Detail memory score, to be 873

consistent with the grouping measure. 874

High- vs. Low-Suppression Grouping. We divided 40 participants 875

into High- vs. Low-Suppression Groups, with 20 participants 876

in each group based on the median split of No-Think-minus- 877

Baseline Detail scores ranking. We used Detail because it 878

captured both variability and suppression effects to a greater 879

extent than did Identification (limited variability since it was 880

a dichotomous measure) and Gist (did not show suppression 881

effect). Pre-TNT learning was not different between Think 882

and No-Think in either group (ps > .116). 883

Quantification and Statistical Analysis. 884

Behavioral Analyses. We conducted separate one-way ANOVAs 885

with three within-subject conditions (Think vs. No-Think 886

vs. Baseline) on the percentage of Identification, Gist, and 887

Details. We then examined the suppression-induced forgetting 888

effect by conducting planned pairwise t-test between No-think 889

and Baseline, with a negative difference (i.e., No-Think mi- 890

nus Baseline) indicating below-baseline, suppression-induced 891

forgetting. 892

We report findings with p < .05 as significant. Within- 893

subject analyses of variance (ANOVAs) are reported with 894

Greenhouse-Geisser corrected p-values whenever the assump- 895

tion of sphericity was violated. We report Cohen’s dz as effect 896

size given our within-subject design (Lakens, 2013). 897

Condition-/Item-level Decoding with Time Domain EEG. Following 898

the statistical analysis procedure (Bae & Luck, 2018), decoding 899

accuracy at each time point (on 0-3000 ms) was compared to 900

chance level by one-tailed paired t-test. Multiple comparisons 901

were controlled by non-parametric cluster-based Monte-Carlo 902

procedure. Specifically, a null distribution was constructed by 903

assigning trial level classification results to random classes (as 904

if the classifier has no knowledge of actual information), and 905

then timepoint-by-timepoint t-tests were performed to obtain 906

a maximum summed t-value of continuous significant time 907
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cluster, which then repeated for 1,000 times. The resulting null908

distribution contained 1,000 summed t-values, which would909

be the distribution of the cluster summed ts when there is910

no true difference between decoding results and chance level.911

Both the cluster α and the α to obtain critical values from the912

permutation null distribution were set at 0.05 (on the positive913

tail, one-tail against chance).914

The between-condition comparison of decoding accuracy915

along time were similar, except that the null distribution was916

constructed by randomly assigning condition labels to trial917

level classification results with two-tail repeated measure t-test918

and clusters were obtained on positive/negative tails, respec-919

tively. Thus, the critical values from the permutation null920

distribution were at 2.5% on the negative clusters null distri-921

bution and 97.5% on the positive clusters null distribution.922

Channel Searchlight Decoding. We compared channel searchlight923

topographies between item-level decoding in Think and No-924

think with a two-tailed paired-sample t test at each channel.925

The multiple comparisons were controlled by cluster correction926

of channel neighbour clusters in Fieldtrip (Oostenveld et al.,927

2011). The neighborhood was defined as in the channel search-928

light analysis. Cluster α was set at 0.05. Observed clusters929

were compared to null distribution on positive/negative tails930

respectively.931

Condition-/Item-level Decoding with Time-Frequency Domain EEG.932

The statistical analyses for time-frequency domain decoding933

were similar to those of time domain decoding, except that934

here clusters were calculated in a 2-D matrix instead of on a935

1-D time axis, and the cluster α was set at 0.05. Also, observed936

clusters were compared to the null distribution clusters of the937

same rankings. The statistical comparison of a single time-938

frequency decoding was performed against chance level (one-939

tailed), and that of the difference between two time-frequency940

decoding was performed against 0 (two-tailed). Theta (4-8 Hz)941

and alpha (9-12 Hz) decoding were assessed after averaging942

across the corresponding frequency bin.943

Time Frequency Analyses. Early theta power at each electrode944

was compared between No-Think and Perceptual Baseline945

after averaging on 200-400 ms across 4 to 8 Hz, and then946

cluster corrected according to electrode positions in Fieldtrip947

(Oostenveld et al., 2011). The suppression-associated reduction948

of theta and alpha power on later time window was examined949

by averaging on 500-3000 ms across 4-8 Hz (theta) and 9-950

12 Hz (alpha), and then compared between No-Think and951

Think/Perceptual Baseline with neighbour cluster correction952

in Fieldtrip. The channel neighbours were defined in the same953

way as in channel searchlight analysis.954

Correlation Analyses. The cluster correction for correlation time955

course was performed: we first transformed Spearman’s Rho956

back to t-values to obtain the observed time-course clustered957

t-values and a null distribution. The null distribution was958

obtained by randomizing labels of the two variables of inter-959

est before calculating the Spearman’s Rho and corresponding960

t-value. The cluster alpha was set as 0.05, and the observed961

clusters were calculated for positive and negative clusters re-962

spectively. The critical values of null distribution were at the963

2.5% on both tails. The comparison between 2 correlation co-964

efficients was conducted through a two-sided z test controlling965

for dependence (Lenhard & Lenhard, 2014).966

High- vs. Low-Suppression Groups Comparison. Decoding accuracy 967

at each time point on 0-3000 ms was compared between High- 968

and Low suppression groups using two-tail independent t-test. 969

The null distribution was constructed by randomly assigning 970

group labels to each subject before by-timepoint t-test, to 971

obtain the max summed-t of continuous significant time cluster 972

when group labels are randomized, which repeated for 10,000 973

times. The resulting 10,000 summed-t values would be the null 974

distribution when no true difference exists between the two 975

groups. Critical values from the permutation null distribution 976

were at 2.5% on the negative clusters null distribution and 977

97.5% on the positive clusters null distribution (two-tail, αs 978

= 0.05). 979
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