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The ability to suppress unwelcome memories is important for productivity and well-being. Successful memory suppression is associ-
ated with hippocampal deactivations and a concomitant disruption of this region’s functionality. Much of the previous neuroimaging
literature exploring such suppression-related hippocampal modulations has focused on the region’s negative coupling with the
prefrontal cortex. Task-based changes in functional connectivity between the hippocampus and other brain regions still need further
exploration. In the present study, we utilize psychophysiological interactions and seed connectome-based predictive modeling to
investigate the relationship between the hippocampus and the rest of the brain as 134 participants attempted to suppress unwanted
memories during the Think/No-Think task. The results show that during retrieval suppression, the right hippocampus exhibited
decreased functional connectivity with visual cortical areas (lingual and cuneus gyrus), left nucleus accumbens and the brain-stem
that predicted superior forgetting of unwanted memories on later memory tests. Validation tests verified that prediction performance
was not an artifact of head motion or prediction method and that the negative features remained consistent across different brain
parcellations. These findings suggest that systemic memory suppression involves more than the modulation of hippocampal activity—
it alters functional connectivity patterns between the hippocampus and visual cortex, leading to successful forgetting.
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Introduction
Some memories we relish retrieving; others risk bringing our inter-
nal life and outward productivity to a standstill if allowed into
consciousness. When confronted with a reminder of a memory
that threatens to cause upset, individuals may summon cognitive
control processes aimed at stopping—or suppressing—retrieval of
the event. With practice, such control curbs unwanted memory
intrusions in the moment, as well as the likelihood of their future
retrieval—outcomes linked to the modulation of hippocampal
activity (Levy and Anderson 2012; for a recent review, see Ander-
son and Hulbert 2021). Much of the evidence for these mnemonic
outcomes stems from a procedure known as the Think/No-Think
(TNT) paradigm.

The TNT paradigm was developed to model memory suppres-
sion in the laboratory, opening an empirical window to the behav-
ioral consequences (Anderson and Green 2001) and neural corre-
lates (Anderson et al. 2004) of attempts to stop memory retrieval.
The paradigm consists of 3 main phases: an encoding phase, the
critical TNT phase, and surprise memory tests. During encoding,
participants are asked to learn a number of cue-target word pairs
to criterion. Then, participants engage in the TNT phase, in which

they repeatedly retrieve (Think condition) or suppress retrieval
(No-Think condition) of the target words, when given the cue
word. As reviewed in detail elsewhere (Anderson and Huddleston
2012; Anderson and Hanslmayr 2014; Anderson and Hulbert 2021;
Marsh and Anderson 2022), surprise final tests for all the learned
associates generally reveal that targets in the No-Think condition
are less recallable than are the Baseline items, which were learned
just as well at the outset, but which were omitted from the TNT
phase. This below-baseline memory impairment has been termed
suppression-induced forgetting (SIF).

Deployed strategically, effective memory suppression is
thought to provide numerous psychological and health-related
benefits (for perspectives on this topic, see Nørby 2015; Fawcett
and Hulbert 2020), as evidenced by correlational evidence linking
greater suppression abilities to reduced depression, anxiety, and
PTSD symptoms (see Stramaccia et al. 2021, for a meta-analysis
across these and other disorders). Whether the goal is to detect
potential vulnerabilities or to train more adaptive coping habits
in individuals who are facing or may face future challenges,
understanding the nature of these relationships and their neural
underpinnings is of critical concern. And just as appreciating
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the potential side effects of retrieval suppression can inform
therapeutic approaches, their very existence has helped establish
a more detailed mechanistic understanding of adaptive memory
control in action (see Anderson and Hulbert 2021, for a review).

The targets of memory suppression are not the only items that
tend to be forgotten after repeated attempts to stop retrieval.
Episodic memories that are encoded (Hulbert et al. 2016) or cued
(Zhu and Wang 2021) before or after periods of targeted retrieval
suppression also become less accessible. This so-called “amnesic
shadow” can affect memories that are entirely unrelated to the
targets of retrieval suppression but simply are unlucky enough
to occur near in time to suppression. This phenomenon bears
a striking resemblance to organic amnesias caused by damage
to the hippocampus (for reviews, see Spiers et al. 2001). In fact,
the amnesic shadow was predicted based on numerous reports
of hippocampal deactivations (relative to the Think condition, as
well as to passive baseline conditions) observed during studies
of memory suppression (Anderson et al. 2004; Depue et al. 2007;
Benoit and Anderson 2012; Paz-Alonso et al. 2013; Gagnepain
et al. 2014; Benoit et al. 2016; Yang et al. 2020; Apšvalka et al.
2022). Consistent with a role of hippocampal deactivations in
successful memory control, hippocampal modulation is greatest
(and predictive of SIF) when unwanted memories intrude and
need to be purged from awareness (Levy and Anderson 2012;
Gagnepain et al. 2017).

Successful retrieval of recent memories does not depend only
on hippocampal activity; however, it also depends on interactions
between the hippocampus and other brain regions, such as the
neocortex (Treves and Rolls 1994; Sutherland and McNaughton
2000; Schott et al. 2013). One prominent view of retrieval holds
that its success depends on pattern completion based on percep-
tual inputs to the hippocampus, helping to reinstate patterns that
were initially encoded in the neocortex (Rolls 2013; Horner et al.
2015; Guzman et al. 2016; Hindy et al. 2016). Indeed, the human
hippocampus has extensive connections with early visual cortex,
parietal cortex, and cingulate gyrus, among other regions (Huang
et al. 2021). These direct connections facilitate hippocampal-
cortical communication, with recall of vivid memories being asso-
ciated with higher communication efficiency of the hippocampal
whole-brain network (Geib et al. 2017). If suppression, rather than
retrieval, is the goal, connectivity within and between memory
regions might be disrupted. Neuroimaging evidence supports this
prediction. For example, suppression not only reduces bilateral
hippocampal activity, but also activity in posterior cortex in a
content-specific manner; thus, suppression of visual objects or
places reduces activity in fusiform gyrus and parahippocampal
place area, respectively (Depue et al. 2007; Gagnepain et al. 2014;
Benoit et al. 2015; Mary et al. 2020). In addition, previous studies
have also reported suppression-related downregulations in the
visual cortex relative to the Think condition, both when words
(Levy and Anderson 2012; Sacchet et al. 2017; Yang et al. 2020)
and pictures were used as stimuli (Depue et al. 2007; Gagnepain
et al. 2014; Benoit et al. 2015; Liu et al. 2016; Gagnepain et al. 2017).
Like the hippocampus, these other regions are involved in memory
representation and retrieval, though for more specialized forms of
content (Albers et al. 2013; Rosenthal et al. 2016; Waldhauser et al.
2016). For example, visual or auditory cortical regions involved
when encoding an event are also reactivated during that event’s
retrieval (Nyberg et al. 2000; Wheeler et al. 2000; Waldhauser
et al. 2016). The hippocampus, as a convergence zone, integrates
information from many brain areas (Backus et al. 2016), yielding
increased functional connectivity between the hippocampus and
the neocortex, such as sensory cortex (Ranganath et al. 2005;
Wolosin et al. 2012; Schott et al. 2013). Therefore, we might expect

that successful suppression of unwanted memories should not
only downregulate activity in the hippocampus and sensory
cortex individually, but also disrupt the communication between
these regions.

For present purposes, we examined how retrieval suppression
modulates hippocampal connectivity with the rest of the brain by
utilizing connectome-based predictive modeling (CPM; Shen et al.
2017; Goldfarb et al. 2020), which previously has revealed brain
functional connectivity related to attention, stress, and creative
ability (Beaty et al. 2018; Rosenberg et al. 2018; Goldfarb et al.
2020; Li et al. 2020). Using a cross-validation approach, CPM min-
imizes the chance of overfitting and improves test–retest relia-
bility. Moreover, compared with other machine learning methods,
the simplicity of the CPM approach allows for more interpretable
models. Our aim was to exploit these methodological advantages
to predict behavioral performance on a standard memory sup-
pression task and to further elucidate the brain mechanisms of
the associated cognitive processes.

In the current study, 134 participants completed the TNT task
during functional magnetic resonance imaging (fMRI) scanning.
To apply CPM, we first divided the brain into 132 regions, including
cortical, subcortical, and cerebellar areas obtained from the
Harvard-Oxford probabilistic atlases of brain structure (Tzourio-
Mazoyer et al. 2002), and then we selected both the right and
left hippocampi as anatomical seeds. As input features for the
CPM, we used a generalized psychophysiological interaction
(g-PPI) method to calculate the functional connectivity changes
between seed regions with other brain regions during memory
suppression (McLaren et al. 2012). Ridge regression was used
to build the prediction model, allowing for different features to
contribute flexibly to the prediction model.

We hypothesized that superior forgetting of unwanted
memories would arise, in part, by disrupting communication
between the hippocampus and posterior cortical regions involved
in memory, including the visual cortex, fusiform gyrus, and
the parahippocampal gyrus. Such disrupted communication
should be reflected in reduced functional connectivity between
the hippocampus and these regions during suppression trials.
We based this hypothesis on evidence that inhibiting memory
retrieval may interrupt pattern completion (Anderson et al. 2004;
Depue 2012), which, in turn, would alter hippocampal functional
connectivity with regions involved in memory representation.

Materials and methods
Participants
We recruited 146 students from Southwest University for
this study. All participants had no history of visual, medical,
neurological, or memory disorders, and completed the TNT phase
(Anderson et al. 2004) during fMRI scanning. After removing
participants because of missing behavioral indices or functional
scans and becuase of severe head motion (predefined as mean
FD > 0.3 mm), 134 participants (Male: 41, Female: 93; average
age: 19.5 years) were retained for analyses. This study has been
approved by the Academic Committee of Southwest University
in China and written informed consent was obtained from each
of the subjects. The resting-state images and behavioral data of
the overall set of 146 participants were used in another study
(Yang et al. 2021). In the current study, we only considered the
functional data.

Behavioral assessment (TNT task)
Participants performed the TNT task (Anderson et al. 2004), which
assesses the ability to suppress unwanted memories. The TNT
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task consists of 3 main phases: the encoding phase, the TNT
phase, and the memory test phase. The TNT phase was completed
in the scanner, whereas the encoding phase and memory test
phases were completed outside the scanner. Further task details
are provided elsewhere for space reasons (Yang et al. 2020). Here,
we briefly describe the 3 main phases.

Encoding phase
During the encoding phase, participants were asked to study asso-
ciations between 66 weakly related cue-target word pairs such
that when presented each cue word, they would be able to reliably
recall the associated target. To advance to the main TNT phase,
participants were required to recall at least 50% of the target
words when presented with their associated cue. Participants had
up to 3 test-feedback cycles to demonstrate this competence after
an initial study period.

TNT phase
After participants demonstrated successful encoding of the
threshold number of cue-target word pairs, they were asked to
practice the TNT task using filler pairs to ensure that participants
understood the instructions pertaining to the Think and No-
Think conditions. The training phase consisted of 2 blocks. After
participants completed each training block, the experimenter
administered a standard diagnostic questionnaire to make sure
they followed the instructions correctly (Liu et al. 2021). Before
entering the scanner to complete the critical TNT task, partici-
pants received a 5-min break. Then, prior to scanning, the correct
word pairs were presented one final time (in a re-randomized
order) to refresh the materials in the scanner environment.

The critical TNT phase consisted of 6 runs in a single session,
with each run lasting 6.7 min and involving the presentation of
16 Think cues and 16 No-Think cues (each cue was presented
twice in each run, according to blocked randomization, with the
condition assignments for the pairings counterbalanced across
participants). Cues from the remaining third of the studied word
pairs did not appear during the TNT phase, as they were reserved
to provide a baseline measure of memory on the final test, given
that they would neither have been suppressed nor retrieved dur-
ing the TNT phase. As in the practice phase, cue words from
the Think condition appeared in green for 3 s, indicating that
participants were to silently recall the associated target and keep
it in mind for the entire time that the cue remained on the
screen. For No-Think trials, the cue word appeared in red for an
equal duration while participants sought to prevent the asso-
ciated target word coming into mind; on these No-Think trials,
participants were told to directly suppress retrieval to block out
the unwanted item, without trying to distract themselves by
substituting another word, image, or idea for the unwanted target.
Across both conditions, participants were trained to keep their
eyes and attention fixed on the presented cues throughout the
trial duration. It is worth noting that the word pairs cued in the
TNT phase included those that were successfully memorized in
the encoding phase, as well as those that were not successfully
memorized. Therefore, for the purpose of our analysis, the studied
word pairs could be further conditionalized based upon whether
participants had successfully recalled the target word in the final
test-feedback round of the encoding phase, ensuring that only
successfully learned pairs contributed to the analyses we discuss.

Memory test phase
After the critical TNT phase, participants completed surprise
memory tests for all the studied targets outside the scanner. After

asking participants to think back to the original encoding phase
(in order to reinstate the encoding phase context), they were asked
to recall the targets to 18 filler pairs targets, cued one at a time
with the original cue word. This practice test allowed participants
to adjust to the instructions to try their best to recall the target
words matching the given cues, regardless of what happened in
the preceding phase. Participants’ memory for the critical pairings
was then tested in a block-randomized fashion with respect to
TNT condition, ensuring that the average test position of the
Baseline, Think, and No-Think items was equated and that output
interference was matched. Each critical target was tested in 2
ways during this phase, each assessing the accessibility of the
learned targets. The same-probe (SP) test, involves the presen-
tation of the original cues on the screen for 3.4 s (interstimulus
interval 0.6 s) each as test prompts to elicit the learned target
words. The independent-probe (IP) test is designed to measure
inhibition in a way that bypasses the original cue-target associ-
ation and any associative interference that the original cue may
trigger (Anderson and Green 2001). Similar to the SP test, the
IP test presents a category or a semantically related cue on the
screen for 3.4 s (interstimulus interval 0.6 s) as test prompts to
elicit the target word fitting the cues. The order of the SP and IP
test was counterbalanced across subjects.

MRI data acquisition
A Siemens 3T scanner (Siemens Magnetom Trio TIM, Erlangen,
Germany; 3.0T MAGNETOM Trio TimSystem) was used to
collect the functional and structural images from 146 par-
ticipants. T1-weighted brain anatomical data were collected
using a magnetization-prepared rapid gradient echo (MPRAGE)
sequence (time repetition, TR = 1,900 ms; flip angle, FA = 9◦;
256 × 256 matrix; time echo, TE = 2.52 ms; time to inversion,
TI = 900 ms; 176 slices; slice thickness = 1.0 mm; and voxel
size = 1 mm × 1 mm × 1 mm). The T2∗-weighted functional
images were recorded using an echo planar imaging (EPI)
sequence (TR = 2,000 ms; TE = 30 ms; matrix size = 64 × 64;
32 interleaved 3-mm thick slices; flip angle = 90◦; in-plane
resolution = 3.4 × 3.4 mm; field of view (FOV) = 220 × 220 mm; and
interslice skip = 0.99 mm).

Image preprocessing
The brain imaging data were preprocessed using the CONN
toolbox (Whitfield-Gabrieli and Nieto-Castanon 2012) in MATLAB
vR2018a (The MathWorks, MA, United States). The scans were
first coregistered and then resampled to a reference image. Slice-
timing correction was used to correct for time shifts by resampling
to match the slice time in the middle of each TA. At this stage,
we also identified outlier scans, which produced a new reference
image by averaging across all scans (except for the outlier scans).
The SPM12 unified segmentation and normalization procedure
(Ashburner and Friston 2005) was used to normalize functional
images to standard MNI space and segment them into gray matter,
white matter (WM), and CSF. We then smoothed the functional
data with a Gaussian kernel of 8-mm FWHM. However, we did not
use the smoothed functional data for our functional connectivity
analyses because smoothing may artificially influence individual
differences in this prediction analysis (Triana et al. 2020). After
preprocessing, the unsmoothed images were denoised using the
anatomical component-based correction (aCompCor) method.
This procedure removes potential confounding effects, including
signals from WM, cerebrospinal fluid (CSF), and 12 movement
parameters (3 rotations, 3 translations, and 6 first-order temporal
derivatives). Importantly, to focus on intrinsic fluctuations in
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functional connectivity and avoid ambiguous inferences, we also
removed the trial-evoked signal (by convolving a boxcar model for
all task events with canonical hemodynamic response function
plus first and second derivatives; Cole et al. 2019; Goldfarb et al.
2020). We did not apply linear detrending to the time courses
because previous research (Anderson and Hulbert 2021) indicates
that there exist some systematic singal changes over TNT blocks,
such as conflict reduction. Temporal band-pass filtering was
applied to eliminate low-frequency drift (<0.01 Hz). We did
not apply global signal (GS) regression because this procedure
may cause false negative correlations in terms of functional
connections (Murphy and Fox 2017), and the GS, itself, may
contain neural information (Wen and Liu 2016).

Seed regions
The nodes were defined using the default Harvard-Oxford atlas
(Tzourio-Mazoyer et al. 2002) applied in CONN toolbox, which
included cortical, subcortical, and cerebellar areas, resulting in
the parcellation of the brain into 132 regions. For each partici-
pant, the time series of each of the 132 nodes was calculated by
averaging the time series of all voxels in that node. We selected
both the left and right hippocampus as seed regions and then
separately calculated the functional connectivity change between
right or left hippocampus with other brain regions (see Section
“Generalized psycho-physiological interaction (g-PPI) analysis”).

Generalized psycho-physiological interaction
(g-PPI) analysis
The fully preprocessed time course of each node was submitted
to g-PPI analysis (using the CONN toolbox; McLaren et al. 2012)
to calculate the functional connectivity change between each
region (right or left hippocampus) with other brain regions in the
No-Think condition compared with the Think condition. The word
pairs presented in the TNT phase included those that were suc-
cessfully memorized in the encoding phase, as well as those that
were not successfully memorized. Therefore, we further divided
the No-Think and Think conditions into No-Think-Learned,
Think-Learned, No-Think-Unlearned, and Think-Unlearned con-
ditions. “Learned” indicates that the word pair was successfully
memorized during encoding phase, “Unlearned” indicates that the
word pair that was not successfully memorized during encoding
phase. The functional connectivity was computed by using a
multiple regression model for the mean time course of right or
left hippocampus. The g-PPI model contained 3 predictors: (i) the
mean time course for a given seed region; (ii) the task effects (No-
Think-Learned, Think-Learned, No-Think-Unlearned, and Think-
Unlearned) convolved with a canonical hemodynamic response
function; (iii) the interaction terms defined as the product of (i)
and (ii). Its objective function can be defined as:

targeti = β0 + β1seedj + β2:k+1task1:k + βk+2:2k+1seedjtasks

In this formula, “target” represents the time series of the target
node (right or left hippocampus). “Seed” represents the time
series of the rest of the brain. The output regression coefficients
(βk + 2:2k + 1) of each interaction term (seedjtasks) represent the
functional connectivity during each condition. The functional
connectivity change was computed by subtracting βThink-Learned

from βNo-Think-Learned and then submitting the result to the
prediction analysis.

Hippocampal seed-CPM
Functional connectivity change was defined as a subtraction of
the 2 beta matrices: βNo-Think-Learned −βThink-Learned). Each region’s

(right or left hippocampus) connectivity change beta matrix con-
tained 131 features. We separately ran the predictive analysis
on the left and right hippocampus. Before the formal prediction
analysis, we regressed out the gender, age, and mean framewise
displacement from every participant’s functional connectivity
change matrix. The leave-one-out cross-validation (LOOCV) pro-
cedure was used to build the prediction model using the training
dataset and to test it on the held-out dataset. Briefly, in each
fold, N − 1 participants served as a training dataset and the left-
out participant served as an independent test dataset, a process
that was then repeated 134 times. In each fold, we computed
the Pearson correlation between each input feature and memory
suppression ability, choosing those features that reached the
statistical threshold of significance (P < 0.05; the observed scores
follow a normal distribution, Shapiro–Wilk test: P > 0.05). Note
that the feature selection step was performed on the training
dataset; it was independent of the test dataset. Based on the
correlation direction, we then divided the chosen features into
positive and negative ones and used ridge regression to build the
predictive model. The objective function of ridge regression can
be defined as:

min
β

N∑

i=1

(
f (xi) − yk

)2 + λ

P∑

j=1

∥∥βj

∥∥2

The regularization parameter λ is used to shrink the regression
coefficient β. As this parameter increases, so does the shrinkage
penalty. Within each fold of the LOOCV, an inner 5-fold cross-
validation was used to obtain the optimal parameter λ from
[2−5, 2−4 . . . 29, 210] (Cui and Gong 2018). After obtaining predicted
behavioral scores for each participant, we computed the model’s
performance as the Pearson correlation (rp) between participants’
observed and predicted scores. We then used a nonparametric
permutation test to test the significance of the correlation
coefficient (rp) by randomly shuffling participants’ observed
scores and input beta matrix and then rerunning the whole
LOOCV procedure. After 1,000 permutations, we obtained a null
distribution of the correlation coefficient between observed and
predicted scores. We computed the P-value of the true model
performance by using the number of null coefficients that
were greater than the true rp plus one and then dividing by
1,000. Because a leave-one-out procedure was used in current
prediction analysis, the features selected in any given fold varied.
To facilitate interpretation of results, in the Results section, we
only describe features that appeared in every fold, which we call
“consistent features.” The predictive features of the right and left
hippocampus that were selected at least once and their probabil-
ity of being selected are presented in Supplementary Tables S3–S6.
The probability represents the percentage of folds in which the
feature was identified. The contribution of each consistent feature
was calculated as the mean regression coefficient across all folds.

Model stability
Head motion
We took a number of steps to deal with the known potential con-
found between functional connectivity and head motion (Van Dijk
et al. 2012). We removed outlier scans during preprocessing and
regressed out mean framewise displacement of each participant’s
functional connectivity matrix. We also used partial correlations
to measure the predictive power of the model.
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Cross-validation strategy
Although widely used in prediction analysis (Beaty et al. 2018;
Rosenberg et al. 2018; Goldfarb et al. 2020), one might be con-
cerned with the LOOCV procedure, as its use of almost all data
points may effectively reduce biases while also increasing the
test-error variance (Kohavi 1995; Varoquaux et al. 2017). Given
this bias-variance trade-off, we also used 10-fold and 2-fold cross-
validation strategies to build the prediction model on a training
dataset and test it on the test dataset. 10-fold and 2-fold cross
validation procedures are similar to the LOOCV procedure, with
the difference being that, in the 10-fold procedure, we randomly
divided the participants into 10 groups, 9 of which were used as
the training set, and the remaining 1 used as the test set. Similarly,
for the 2-fold procedure, half the participants served as the train-
ing dataset, whereas the remaining half served as the test dataset.
Because we randomly divided participants into different groups,
the prediction performance may differ. Therefore, we repeated the
10-fold or 2-fold prediction test 100 times, and take the mean
Pearson correlation between observed scores and predicted scores
as the prediction performance, using 1,000 permutations to test
for significance.

Brain parcellation
Brain parcellation may affect both feature selection and pre-
diction accuracy. Therefore, after obtaining the prediction fea-
tures defined using the Harvard-Oxford atlas, we then re-ran
the procedure instead using the Brainnetome Atlas (Fan et al.
2016). The Brainnetome Atlas (https://www.nitrc.org/projects/bn_
atlas) is a cross-validated connectional atlas consisting of 210
cortical and 36 subcortical nodes. Based on high-quality in vivo
multi-modal MRI data collected over 6 years, this freely available
atlas includes information on both anatomical and functional
connections. This allowed us to compare whether the predictive
features and predictive performance were the same across the 2
parcellation approaches.

Regression method and feature selection
threshold
In the main analysis, we used ridge regression to construct a pre-
dictive model with a commonly used feature threshold of P < 0.05
(Rosenberg et al. 2018; Goldfarb et al. 2020). To further ensure
that our results did not depend on specific regression methods
or feature selection thresholds, we also constructed predictive
models based on 4 widely used regression methods: multiple
linear regression, Lasso (least absolute shrinkage and selection
operator), relevance vector regression, and support vector regres-
sion—each under 5 different feature selection thresholds (0.05,
0.01, 0.005, 0.001, and 0.0005).

Results
Behavioral results
Both the SP and IP tests were used to assess the final recall
percentages for targets from the 3 TNT conditions (Think, No-
Think, and Baseline). Both tests measured a participant’s memory
suppression ability by subtracting the recall percentage of the No-
Think items from that of the Baseline items. The difference is
termed SIF. We conditionalized our analysis by considering only
those items for which a participant was able to demonstrate
successful encoding on their last test-feedback cycle prior to
embarking on the TNT phase (Benoit and Anderson 2012). Because
forgetting on the SP test is thought to reflect a mix of inhibition

Table 1. The recall percentages observed on the SP and the IP
tests.

Condition Think No-Think Baseline

SP test
Conditionalized 92% [90 94] 83% [80 86] 89% [87 91]
Unconditionalized 81% [79 84] 72% [68 75] 76% [73 79]
IP test
Conditionalized 43% [40 46] 46% [43 48] 55% [52 58]
Unconditionalized 39% [36 41] 40% [37 42] 47% [44 50]

Conditionalized data refer to final recall scores, restricted to items that
were demonstrably learned during study; unconditionalized data include
all items. Values in brackets represent the 95% confidence intervals for the
marginal means.

and interference, we chose to use the IP test as a purer measure
of inhibition (Anderson and Levy 2007). Consistent with previous
findings and our prior reporting based on this sample of partic-
ipants (Liu et al. 2021), the conditionalized IP recall of No-Think
items (M = 45.47%, standard deviation, SD = 15.73%) was signifi-
cantly lower than the recall percentage of Baseline (M = 54.75%,
SD = 18.25%), yielding a reliable SIF effect (M = 9.25%, SD = 19.98%,
1-tailed, t133 = 5.36, P = 1.8e − 07, see Table 1).

Prediction of memory suppression ability
We applied seed-CPM to test whether and how memory sup-
pression ability (operationalized as SIF) on the final test was
predicted by suppression-related hippocampal functional con-
nectivity changes. We separately ran the predictive analysis on
the left and right hippocampus. By computing the Pearson cor-
relation between predicted and observed scores, we found that,
compared with the Think condition, the functional connectiv-
ity change associated with the right hippocampus during the
No-Think task significantly predicted memory suppression abil-
ity (r = 0.36, P = 0.005, see Fig. 1a). We then divided the general
predictive network into positive and negative networks. Only
the negative network predicted participants’ memory suppres-
sion ability (positive network: r = 0.14, P = 0.180; negative network:
r = 0.35, P = 0.004, see Fig. 1b and c). For the left hippocampus, we
found that the functional connectivity change did not reliably
predict subjects’ memory suppression ability (r = 0.21, P = 0.084,
see Fig. 2a). After we divided the general predictive network into
positive and negative networks, the positive networks failed to
predict memory suppression ability and the predictive power was
marginal in the negative network (positive network: r = − 0.05,
P = 0.713; negative network: r = 0.22, P = 0.053, see Fig. 2b and c).
The P-values presented here were all obtained following 1,000 per-
mutation tests. In order to further facilitate the interpretation of
the results, we mainly focused on the features that were selected
in each and every fold—what we called “consistent” features
(Greene et al. 2020; Rutherford et al. 2020; Yang et al. 2021). The
predictive features of the right and left hippocampus that were
selected at least once and their probability of being selected are
presented in Supplementary Tables S3–S6. The consistent right
hippocampal negative network revealed that decreased func-
tional connectivity during No-Think trials between the right hip-
pocampus and bilateral intracalcarine cortex, right cuneal cortex,
left lingual gyrus, right supracalcarine cortex, right occipital pole,
left accumbens, and bran-stem predicted higher memory sup-
pression ability (see Fig. 1d). Among these features, left accum-
bens had the largest weight (see Table 2). The selected negative
features had a certain pattern in spatial distribution, in which 75%
of the negative features (6/8) were located in the visual cortex,
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Fig. 1. Right hippocampal functional connectivity changes predict SIF. The P-values here were obtained following 1,000 permutation tests. a) The
predictive performance of all selected features; b) the predictive performance of positive selected features; c) the predictive performance of negative
selected features; d) the highlighted negative features exist consistently in every cross-validation fold. The brain visualization was generated using
BrainNet Viewer (Xia et al. 2013). In the scatter plots, the X-axes represent the Z-normalized memory suppression ability, calculated as the recall
percentage of the Baseline condition minus the No-Think condition on the conditionalized IP test and the Y-axes represent the Z-normalized predicted
score. The shaded area in the scatter plots represent the 95% confidence interval.

Table 2. The prediction weight of consistent negative features of
right hippocampus.

Regions Prediction weight

Left intracalcarine cortex −0.1305
Right intracalcarine cortex −0.0397
Right cuneal cortex −0.0280
Left lingual gyrus −0.0111
Right supracalcarine cortex −0.0465
Right occipital pole −0.0809
Left accumbens −0.1692
Brain stem −0.1019

including Brodmann areas 17 and 18. For the left hippocampus,
the consistent negative network revealed that decreased func-
tional connectivity during No-Think trials between the and left
intracalcarine cortex, left lingual gyrus, right supracalcarine cor-
tex, and bilateral accumbens predicted higher memory suppres-
sion ability (see Fig. 2d). Among these features, the left accumbens
had the largest weight (see Table 3).

The stability of the prediction model
Head motion
We applied several methods to confirm that the prediction
analysis was not confounded by head motion. First, head motion,
calculated as the mean frame-to-frame displacement (mean

Table 3. The prediction weight of consistent negative features of
left hippocampus.

Regions Prediction weight

Left intracalcarine cortex −0.0423
Left lingual gyrus −0.0463
Right supracalcarine cortex −0.0736
Right accumbens −0.0622
Left accumbens −0.0970

FD), did not correlate with memory suppression ability (r = 0.01,
P = 0.897). Second, we measured the model performance by
comparing the predicted scores with observed scores using partial
correlations. After controlling for head motion, the prediction
remained largely unchanged (Right hippocampus: all predictive
features: r = 0.36, P = 0.005, positive predictive features: r = 0.14,
P = 0.178, and negative predictive features: r = 0.35, P = 0.004. Left
hippocampus: all predictive features: r = 0.21, P = 0.088, positive
predictive features: r = −0.05, P = 0.715, and negative predictive
features: r = 0.22, P = 0.057).

Cross-validation strategies
The LOOCV procedure we used in the above analyses may
effectively reduce bias while also increasing variance of prediction
error. Therefore, we also applied 10-fold and 2-fold cross-
validation strategies to verify the stability of the results. For
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Fig. 2. Left hippocampal functional connectivity changes predict SIF. The P-values here were obtained following 1,000 permutation tests. a) the predictive
performance of all selected features; b) the predictive performance of positive selected features; c) the predictive performance of negative selected
features; d) the highlighted negative features exist consistently in every cross-validation folds. The brain visualization was generated using BrainNet
Viewer (Xia et al. 2013). In the scatter plots, the X-axes represent the Z-normalized memory suppression ability, calculated as the recall percentage of
the Baseline condition minus the No-Think condition on the conditionalized IP test, and the Y-axes represent the Z-normalized predicted score. The
shaded area in the scatter plots represent the 95% confidence interval.

the right hippocampus, the predictive power of all features and
negative features remained significant using the 10-fold and 2-
fold approaches, despite some expected numeric weakening of
the correlation coefficients compared with our primary approach
(see Fig. 3). The 10-fold approach revealed the following: all
predictive features: r = 0.32, P = 0.005; positive predictive features:
r = 0.07, P = 0.281; and negative predictive features: r = 0.32,
P = 0.004. The 2-fold approach revealed the following: all predictive
features: r = 0.27, P = 0.004; positive predictive features: r = 0.06,
P = 0.221; and negative predictive features: r = 0.28, P = 0.004.
For the left hippocampus, the functional connectivity change
associated with the left hippocampus failed to predict memory
suppression ability using the 10-fold and 2-fold approaches. The
10-fold approach revealed the following: all predictive features:
r = 0.10, P = 0.224; positive predictive features: r = − 0.07, P = 0.825;
and negative predictive features: r = 0.16, P = 0.088. The 2-fold
approach revealed the following: all predictive features: r = 0.04,
P = 0.315; positive predictive features: r = − 0.03, P = 0.684; and
negative predictive features: r = 0.08, P = 0.182. Again, the P-values
presented here were all obtained following 1,000 permutation
tests.

Brain parcellation
In the foregoing analyses, we defined the nodes using the Harvard-
Oxford atlas. However, the particulars of the chosen brain
parcellation may affect prediction accuracy. Therefore, we applied
a different brain parcellation and reran the prediction analyses to

Fig. 3. The prediction performance of right hippocampus based on differ-
ent cross-validation strategies. The P-values here were obtained following
1,000 permutation tests. ∗∗ represents P < 0.01; LOOCV: leave-one-out
cross validation.

determine if the results generalized. The procedure we followed
was otherwise the same as defined previously. The results again
revealed that the negative features of right hippocampus reliably
predicted participants’ memory suppression abilities (r = 0.30,
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Fig. 4. The P-value here was obtained following 1,000 permutation tests. a) The prediction performance of right hippocampal negative features based
on the Brainnetome atlas; b) brain map highlighting the right hippocampus consistent negative features that overlapped across the 2 parcellation
approaches (colored in blue); visualization generated with BrainNet Viewer (Xia et al. 2013). In the scatter plot, the X-axis represent the Z-normalized
memory suppression ability, calculated as the recall percentage of the Baseline condition minus the No-Think condition on the conditionalized IP test,
and the Y-axis represents the Z-normalized predicted score. The shaded area in the scatter plot represents the 95% confidence interval.

Fig. 5. The prediction performance of right hippocampus based on different regression methods. The numbers in the heat map represent the Pearson
correlation coefficient between predicted score and observed score. MLR: multiple linear regression; Ridge: ridge regression; Lasso: least absolute
shrinkage and selection operator; RVR: relevance vector regression; and SVR: support vector regression.

P = 0.018; see Fig. 4a). Notably, the negative right hippocampal
predictive features based on the 2 parcellation approaches largely
overlapped in space, namely the lingual gyrus, cuneus gyrus, and
left nucleus accumbens (see Fig. 4b). For the left hippocampus,
the negative features failed to predicted subjects’ memory
suppression abilities (r = 0.10, P = 0.265).

Regression methods and feature selection thresholds
In our primary analyses, ridge regression was used to build the
prediction model under the feature selection threshold of 0.05.
For validation purposes, we also applied different regression
approaches and feature selection thresholds to verify that our
right hippocampal results did not depend on any particular
regression method or feature selection threshold (see Fig. 5).
The results show that different regression methods or feature
selection thresholds all produced similar prediction results
for right hippocampus. The selected consistent features at
different thresholds for right hippocampus are shown in the
Supplementary Table S1.

Multiple comparisons correction
In the main analysis, we used the left and right hippocampus
as nodes and used all the features (both positive and negative)
to predict a participant’s memory suppression ability. In other
words, 6 (2∗3 = 6) models were trained and tested using LOOCV for
each subject. Even if we treated the left and right hippocampus
as independent regions and used a strict Bonferroni correction
(0.05/6 = 0.0083), the primary results of the prediction model built
on all or on just the negative features of the right hippocampus
remained significant.

Discussion
By adopting a g-PPI and seed-CPM analysis approach to neu-
roimaging data from a large sample of participants engaged in
memory suppression, we found that the change in functional
connectivity of the right hippocampus during memory suppres-
sion predicted participants’ forgetting of suppressed memories
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on a later recall test. Specifically, decreased functional connec-
tivity of the right hippocampus with visual cortical areas (bilat-
eral intracalcarine cortex, right cuneal cortex, left lingual gyrus,
right supracalcarine cortex, and right occipital pole), left accum-
bens and the brain-stem predicted superior forgetting ability for
suppressed items and formed the negative predictive network.
Through several validation tests, we showed that these negative
right hippocampal networks were stable across different cross-
validation methods, different feature selection thresholds and dif-
ferent regression approaches and did not arise artifactually from
head motion. Furthermore, most of the right hippocampal nega-
tive features generalized to a different parcellation atlas. Taken
together, these results broaden our view of the hippocampus’s
role in suppression, moving beyond the simple observation that
hippocampal deactivations and negative prefrontal-hippocampal
coupling underpin this process (for a recent review, see Anderson
and Hulbert 2021). Our results provide additional support for the
notion that, in addition to direct disruption of hippocampally
dependent mnemonic processes (for evidence of this, see Hulbert
et al. 2016), attempts to stop unwanted memory retrieval depend
on reduced communication between the hippocampus and visual
cortex.

Many studies have found that memory suppression decreases
hippocampal activation (Anderson and Hulbert 2021). Effective
connectivity analyses further revealed that reduced activation
of these regions is caused in part by top-down control by MFG
(Benoit and Anderson 2012; Benoit et al. 2015, 2016; Gagnepain
et al. 2017; Apšvalka et al. 2022). But most research focuses on
a few selected ROIs, such as the right MFG as the source of
modulation (Paz-Alonso et al. 2013; Xie et al. 2020; Yang et al.
2020) and the hippocampus as the target of downregulation.
However, successful retrieval depends on extensive communica-
tion between the hippocampus and many brain regions, includ-
ing the sensory cortex (Treves and Rolls 1994; Sutherland and
McNaughton 2000; Schott et al. 2013). Although several studies
have documented how suppression affects cortical regions out-
side the hippocampus that represent the domain-specific content
of the to-be-suppressed event (e.g. Gagnepain et al. 2014, 2017;
Benoit et al. 2015), we are not aware of any studies (other than
the present one) that have characterized how suppression alters
functional connectivity between the hippocampus and cortical
regions involved in recollection, in a manner linked to forgetting.
In the present study, we used g-PPI (functional connectivity) and
seed-CPM (prediction analysis) to demonstrate that decreased
functional connectivity between the right hippocampus and the
visual cortex predicts successful forgetting. In addition, we found
that hippocampal connectivity with other brain regions, such
as the nucleus accumbens, predicts memory suppression ability.
Previous research shows that, compared with the Think condition,
the posterior cortex exhibits a large area of reduced activation
during memory suppression, mainly located in the cuneus and
the lingual gyrus (Levy and Anderson 2012; Benoit et al. 2016;
Gagnepain et al. 2017; Hu et al. 2017; Yang et al. 2020). Our
study shows the same pattern: activation is suppressed during
the No-Think condition compared with Think-condition in the
cuneus and lingual gyrus, along with the right hippocampus (see
Supplementary Table S2 and Supplementary Fig. S1). According
to a prominent neural model of memory suppression (Ander-
son et al. 2004; Depue et al. 2007; Depue 2012; Benoit et al.
2015; Hu et al. 2017; Anderson et al. 2016; Anderson and Hulbert
2021), the prefrontal cortex can be recruited to inhibit memory
representations at the level of the hippocampal convergence zone,
which brings together different aspects of the unwanted memory,

and/or at the level of the different sensory and emotional aspects
of those memories, which might include the visual cortex (Rolls
2013). Adding to this, our results demonstrate that deactivations
found in other memory-related regions linked to the hippocam-
pus may not be independent of one another. Indeed, we found
that the functional connectivity between these other regions also
decreases in a manner that may effectively predict subjects’ later
forgetting of the suppressed content. Such work invites future
investigations exploring how memory suppression influences the
interaction between the hippocampus and other brain regions
that contribute to different forms of memory representation.

Of the negative features we identified, the decreased func-
tional connectivity between the right hippocampus and the lin-
gual gyrus and with the cuneus gyrus were the most prominent
and stable. Both regions send and receive projections to the
medial temporal lobes via the inferior longitudinal fasciculus, as
demonstrated by diffusion tractography and postmortem dissec-
tion (Palejwala et al. 2021), suggesting a role in memory. Consis-
tent with this possibility, both structural and functional magnetic
resonance imaging findings suggest that these components of
the ventral visual stream play a role in recollection. For example,
greater cortical thickness/gray matter volume in the lingual gyrus
predicts better long-term free recall across the lifespan (Walhovd
et al. 2006; Kalpouzos et al. 2009). In fMRI studies, the lingual gyrus
also shows greater univariate activation during episodic retrieval
than during encoding (Robinson-Long et al. 2009). Variations in
signal within the lingual gyrus predict the vividness with which
a person can mentally replay a video during episodic retrieval
(St-Laurent et al. 2014) and the level of perceptual detail that can
be reinstated from previously encoded pictures (McDonough et al.
2014). Wing et al. (2015) found that only the anterior hippocampus
and lingual gyrus showed univariate activity at encoding that
predicted the degree of item-specific encoding/retrieval match
in multivariate analyses, suggesting they helped to establish a
recallable and vivid episodic trace. Strikingly, the role of the
lingual gyrus may not be restricted to voluntary retrieval but may
also extend to involuntary intrusions of unwelcome memories:
greater cortical thickness in lingual gyrus predicts participants’
propensity to experience involuntary intrusions during the week
after exposure to a traumatic film clip (Gvozdanovic et al. 2020).
Collectively, these findings suggest that the visual cortical regions
such as the lingual and cuneal gyri contribute to the formation
and retrieval of perceptually vivid experiences, as might arise
during intrusive memories of trauma. Given these observations,
suppressing the retrieval of an intrusive memory might achieve
forgetting, in part, by disrupting hippocampal-lingual connectiv-
ity that would otherwise support retrieval. Alternatively, retrieval
suppression may target both hippocampal and visual cortical
activity, and this parallel modulation may be reflected by reduced
connectivity (Gagnepain et al. 2014). Notably, previous studies
have reported deactivations within the visual cortex when words
were the targets of memory suppression, as they were in this
study, as well as when the memoranda were pictorial (Depue et al.
2007; Levy and Anderson 2012; Gagnepain et al. 2014, 2017; Benoit
et al. 2015; Sacchet et al. 2017; Yang et al. 2020). Given that the
visual cortex may be involved in the representation of both types
of materials, our finding of decreased hippocampus-visual cortex
connectivity predicting superior memory suppression ability may
similarly generalize (though this speculation needs to be substan-
tiated by future research).

We also found that decreased functional connectivity between
the right hippocampus and left nucleus accumbens predicted
superior SIF. Although retrieval suppression has been found to
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engage the caudate nucleus and the putamen
(Guo et al. 2018), no study has specifically hypothesized a role of
the nucleus accumbens in memory suppression. Why this pattern
of connectivity predicts SIF is unclear. Because the anatomical
projections linking these structures are unidirectional from the
hippocampus to the accumbens (Thierry et al. 2000; Floresco
2015), it is unlikely that the accumbens could exert an inhibitory
impact on hippocampal memory traces to induce forgetting. On
the other hand, the nucleus accumbens participates in a network
of regions that supports the avoidance of threat, including both
active avoidance (taking an action to avoid a threat) and inhibitory
avoidance (withholding an action to avoid a threat; e.g. Levita
et al. 2012; Piantadosi et al. 2018). Interestingly, in human imaging
studies, inhibitory avoidance (e.g. given a warning cue preceding
the appearance of an unpleasant image, withholding a keypress
response to prevent the image from appearing) downregulates
blood oxygen level-dependent (BOLD) signal in the accumbens,
with increasing downregulation predicting state anxiety (Levita
et al. 2012). Because retrieval suppression can be viewed as a
form of inhibitory avoidance in which the threat originates from
memory, rather than perception, and in which the response is
to stop retrieval rather than motor action, the current findings
may constitute another example of this intriguing phenomenon.
If so, our findings link this form of inhibitory avoidance to later
forgetting and to the suppression of hippocampal activity. One
simple account of both phenomena is that both retrieval stopping
and Levita et al.’s inhibitory avoidance paradigm may lead people
to suppress hippocampal activity to prevent recollection of the
unwelcome content, disrupting the hippocampus’s connectivity
with the nucleus acumbens.

Our demonstration that suppression-induced hippocampal
functional connectivity changes could predict participants’ later
forgetting is novel in that previous research only achieved
this type of prediction using resting-state connectivity of the
frontoparietal control networks (Yang et al. 2021). The current
findings complement those earlier results. Compared with
functional connectivity change induced by a task, resting-state
functional connectivity tends to be more stable across tasks,
and is thus more suitable for predicting individuals’ general
competencies (Gratton et al. 2018). However, people face many
different tasks in daily life, making it important to dynamically
tailor the state of the interconnected brain networks to perform
the particular task at hand. Functional connectivity change is
more appropriate to predict these dynamic task-related shifts
that are missed by resting-state analysis. Previous studies have
shown that the human brain has an “intrinsic functional network
architecture” (Cole et al. 2014) and the functional network is
highly similar in different tasks across subjects (Cole et al. 2014;
Krienen et al. 2014; Gratton et al. 2016). Indeed, in the present
study, we found that the group-averaged hippocampal functional
connectivity was highly similar between the No-Think and Think
conditions (right hippocampus: r = 0.90 and left hippocampus:
r = 0.90). Gratton et al. (2018) further demonstrated that the
intrinsic functional network changes induced by the task are
relatively small (∼5%). Our results indicate that, although task-
induced changes were small, they also related to participants’
cognitive performance. Using functional connectivity change to
predict participants’ performance and mental states is a new
and promising method. Previous studies have used this method
to predict levels of stress from the hippocampal connectivity
network and compared this method with others (Goldfarb et al.
2020; Greene et al. 2020). The use of seed-CPM could also allow
researchers to better focus on key brain areas and facilitate the

discovery of novel networks involved in a task (Goldfarb et al.
2020).

In conclusion, we used machine learning to reveal how the
hippocampus communicates functionally with the rest of the
brain during memory suppression and in a manner that predicts
behavior on a later memory test. Overall, our results suggest
that active suppression yields forgetting through decreases in
the functional connectivity between the right hippocampus with
visual cortex (lingual gyrus and cuneus gyrus) and nucleus acum-
bens. The identified hippocampal networks provide insight into
neurobiological mechanisms supporting active forgetting, which
could, in turn, have profound implications for mental disorders
characterized by intrusive memories.

Acknowledgments
We would like to thank Ana Catarino (University of Cambridge)
for training on TNT data collection.

Supplementary material
Supplementary material is available at Cerebral Cortex online.

Funding
This research was supported by the National Natural Science
Foundation of China (31600878,32271112), the 13th 5-years plan of
national sciences of education sciences, Young Teachers Research
Program of the Ministry of Education (EBA200393), the Natural
Science Foundation of Chongqing (cstc2021jcyj-msxmX1138), and
a Medical Research Council grant (MC-A060-5PR00) to MCA.

Conflict of interest statement: The authors declare no conflicts of
interest.

Data/code availability
The code used for predictive analysis and permutation testing are
available at: https://github.com/YuchiYannn/tnt_FCchanges. Due
to the relevant regulations imposed by the administering insti-
tution on human subject image data, the data in this study are
only available from the authors upon request. Re-analysis of the
data requires formal sharing agreement and also approval from
Academic Committees of Southwest University and Chongqing
Medical University in China.

References
Albers AM, Kok P, Toni I, Dijkerman HC, De Lange F. Shared represen-

tations for working memory and mental imagery in early visual
cortex. Curr Biol. 2013:23(15):1427–1431.

Anderson MC, Green C. Suppressing unwanted memories by execu-
tive control. Nature. 2001:410(6826):366–369.

Anderson MC, Hanslmayr S. Neural mechanisms of motivated for-
getting. Trends Cogn Sci. 2014:18(6):279–292.

Anderson MC, Huddleston E. Towards a cognitive and neurobiolog-
ical model of motivated forgetting. In: Belli RF, editors. True and
false recovered memories: toward a reconciliation of the debate. New
York: Springer; 2012. pp. 53–120.

Anderson MC, Hulbert JC. Active forgetting: adaptation of memory
by prefrontal control. Annu Rev Psychol. 2021:72(1):1–36.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/8/4189/6713280 by guest on 05 February 2024

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac336#supplementary-data
https://github.com/YuchiYannn/tnt_FCchanges


Yuchi Yan et al. | 4199

Anderson MC, Levy BJ. Theoretical issues in inhibition: insights from
research into human memory. In: Gorfein D, MacLeod CM, edi-
tors. Inhibition in cognition. Washington: American Psychological
Association; 2007. pp. 81–102

Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli
SW, Glover GH, Gabrieli JD. Neural systems underlying the sup-
pression of unwanted memories. Science. 2004:303(5655):232–235.

Anderson MC, Bunce JG, Barbas H. Prefrontal–hippocampal path-
ways underlying inhibitory control over memory. Neurobiol Learn
Mem. 2016:134:145–161.

Apšvalka D, Ferreira CS, Schmitz TW, Rowe JB, Anderson M. Dynamic
targeting enables domain-general inhibitory control over action
and thought by the prefrontal cortex. Nat Commun. 2022:13(1):
1–21.

Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005:
26(3):839–851.

Backus AR, Bosch SE, Ekman M, Grabovetsky AV, Doeller CF.
Mnemonic convergence in the human hippocampus. Nat Com-
mun. 2016:7(1):1–9.

Beaty RE, Kenett YN, Christensen AP, Rosenberg MD, Benedek M,
Chen Q, Fink A, Qiu J, Kwapil TR, Kane MJ. Robust prediction of
individual creative ability from brain functional connectivity. Proc
Natl Acad Sci. 2018:115(5):1087–1092.

Benoit RG, Anderson MC. Opposing mechanisms support the vol-
untary forgetting of unwanted memories. Neuron. 2012:76(2):
450–460.

Benoit RG, Hulbert JC, Huddleston E, Anderson MC. Adaptive top–
down suppression of hippocampal activity and the purging
of intrusive memories from consciousness. J Cogn Neurosci.
2015:27(1):96–111.

Benoit RG, Davies DJ, Anderson MC. Reducing future fears by sup-
pressing the brain mechanisms underlying episodic simulation.
Proc Natl Acad Sci. 2016:113(52):E8492–E8501.

Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and
task-evoked network architectures of the human brain. Neuron.
2014:83(1):238–251.

Cole MW, Ito T, Schultz D, Mill R, Chen R, Cocuzza C. Task activations
produce spurious but systematic inflation of task functional
connectivity estimates. NeuroImage. 2019:189:1–18.

Cui Z, Gong G. The effect of machine learning regression algorithms
and sample size on individualized behavioral prediction with
functional connectivity features. NeuroImage. 2018:178:622–637.

Depue BE. A neuroanatomical model of prefrontal inhibitory mod-
ulation of memory retrieval. Neurosci Biobehav Rev. 2012:36(5):
1382–1399.

Depue BE, Curran T, Banich MT. Prefrontal regions orchestrate sup-
pression of emotional memories via a two-phase process. Science.
2007:317(5835):215–219.

Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C,
Xie S, Laird AR. The human brainnetome atlas: a new brain
atlas based on connectional architecture. Cereb Cortex. 2016:26(8):
3508–3526.

Fawcett JM, Hulbert JC. The many faces of forgetting: Toward a
constructive view of forgetting in everyday life. J Appl Res Mem
Cogn. 2020:9(1):1–18.

Floresco SB. The nucleus accumbens: an interface between cogni-
tion, emotion, and action. Annu Rev Psychol. 2015:66(1):25–52.

Gagnepain P, Henson RN, Anderson MC. Suppressing unwanted
memories reduces their unconscious influence via targeted cor-
tical inhibition. Proc Natl Acad Sci. 2014:111(13):E1310–E1319.

Gagnepain P, Hulbert J, Anderson MC. Parallel regulation of memory
and emotion supports the suppression of intrusive memories. J
Neurosci. 2017:37(27):6423–6441.

Geib BR, Stanley ML, Wing EA, Laurienti PJ, Cabeza R. Hippocampal
contributions to the large-scale episodic memory network predict
vivid visual memories. Cereb Cortex. 2017:27(1):680–693.

Goldfarb EV, Rosenberg MD, Seo D, Constable RT, Sinha R. Hip-
pocampal seed connectome-based modeling predicts the feeling
of stress. Nat Commun. 2020:11(1):1–10.

Gratton C, Laumann TO, Gordon EM, Adeyemo B, Petersen SE. Evi-
dence for two independent factors that modify brain networks to
meet task goals. Cell Rep. 2016:17(5):1276–1288.

Gratton C, Laumann TO, Nielsen AN, Greene DJ, Gordon EM, Gilmore
AW, Nelson SM, Coalson RS, Snyder AZ, Schlaggar BL. Functional
brain networks are dominated by stable group and individual fac-
tors, not cognitive or daily variation. Neuron. 2018:98(2):439–452.

Greene AS, Gao S, Noble S, Scheinost D, Constable RT. How tasks
change whole-brain functional organization to reveal brain-
phenotype relationships. Cell Rep. 2020:32(8):108066.

Guo Y, Schmitz TW, Mur M, Ferreira CS, Anderson MC. A supramodal
role of the basal ganglia in memory and motor inhibition: meta-
analytic evidence. Neuropsychologia. 2018:108:117–134.

Guzman SJ, Schlögl A, Frotscher M, Jonas P. Synaptic mechanisms
of pattern completion in the hippocampal CA3 network. Science.
2016:353(6304):1117–1123.

Gvozdanovic G, Stämpfli P, Seifritz E, Rasch B. Structural brain dif-
ferences predict early traumatic memory processing. Psychophys-
iology. 2020:57(1):e13354.

Hindy NC, Ng FY, Turk-Browne NB. Linking pattern completion in the
hippocampus to predictive coding in visual cortex. Nat Neurosci.
2016:19(5):665–667.

Horner AJ, Bisby JA, Bush D, Lin W-J, Burgess N. Evidence for holistic
episodic recollection via hippocampal pattern completion. Nat
Commun. 2015:6(1):1–11.

Hu X, Bergström ZM, Gagnepain P, Anderson MC. Suppressing
unwanted memories reduces their unintended influences. Curr
Dir Psychol Sci. 2017:26(2):197–206.

Huang C-C, Rolls ET, Hsu C-CH, Feng J, Lin C-P. Extensive cortical con-
nectivity of the human hippocampal memory system: beyond the
“what” and “where” dual stream model. Cereb Cortex. 2021:31(10):
4652–4669.

Hulbert JC, Henson RN, Anderson MC. Inducing amnesia through
systemic suppression. Nat Commun. 2016:7(1):1–9.

Kalpouzos G, Chételat G, Baron J-C, Landeau B, Mevel K, Godeau C,
Barré L, Constans J-M, Viader F, Eustache F. Voxel-based mapping
of brain gray matter volume and glucose metabolism profiles in
normal aging. Neurobiol Aging. 2009:30(1):112–124.

Kohavi R. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai. 1995:14:1137–1145.

Krienen FM, Yeo BT, Buckner RL. Reconfigurable task-dependent
functional coupling modes cluster around a core functional
architecture. Philos Trans R Soc B Biol Sci. 2014:369(1653):20130526.

Levita L, Hoskin R, Champi S. Avoidance of harm and anxiety: a role
for the nucleus accumbens. NeuroImage. 2012:62(1):189–198.

Levy BJ, Anderson MC. Purging of memories from conscious
awareness tracked in the human brain. J Neurosci. 2012:32(47):
16785–16794.

Li J, Biswal BB, Meng Y, Yang S, Duan X, Cui Q, Chen H, Liao W. A neu-
romarker of individual general fluid intelligence from the white-
matter functional connectome. Transl Psychiatry. 2020:10(1):1–12.

Liu Y, Lin W, Liu C, Luo Y, Wu J, Bayley PJ, Qin S. Memory consolida-
tion reconfigures neural pathways involved in the suppression of
emotional memories. Nat Commun. 2016:7(1):1–12.

Liu P, Hulbert JC, Yang W, Guo Y, Qiu J, Anderson MC. Task compli-
ance predicts suppression-induced forgetting in a large sample.
Sci Rep. 2021:11(1):1–13.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/8/4189/6713280 by guest on 05 February 2024



4200 | Cerebral Cortex, 2023, Vol. 33, No. 8

Marsh LC, Anderson M. Inhibition as a cause of forgetting. In: Kahana
MJ, Wagner AD, editors. The Oxford handbook of human memory.
Oxford: Oxford University Press; 2022

Mary A, Dayan J, Leone G, Postel C, Fraisse F, Malle C, Vallée
T, Klein-Peschanski C, Viader F, De la Sayette V. Resilience
after trauma: the role of memory suppression. Science.
2020:367(6479):eaay8477.

McDonough IM, Cervantes SN, Gray SJ, Gallo DA. Memory’s aging
echo: age-related decline in neural reactivation of perceptual
details during recollection. NeuroImage. 2014:98:346–358.

McLaren DG, Ries ML, Xu G, Johnson SC. A generalized form
of context-dependent psychophysiological interactions (gPPI):
a comparison to standard approaches. NeuroImage. 2012:61(4):
1277–1286.

Murphy K, Fox MD. Towards a consensus regarding global signal
regression for resting state functional connectivity MRI. NeuroIm-
age. 2017:154:169–173.

Nørby S. Why forget? On the adaptive value of memory loss. Perspect
Psychol Sci. 2015:10(5):551–578.

Nyberg L, Habib R, McIntosh AR, Tulving E. Reactivation of encoding-
related brain activity during memory retrieval. Proc Natl Acad Sci.
2000:97(20):11120–11124.

Palejwala AH, Dadario NB, Young IM, O’Connor K, Briggs RG, Conner
AK, O’Donoghue DL, Sughrue ME. Anatomy and white matter
connections of the lingual gyrus and cuneus. World Neurosurg.
2021:151:e426–e437.

Paz-Alonso PM, Bunge SA, Anderson MC, Ghetti S. Strength of cou-
pling within a mnemonic control network differentiates those
who can and cannot suppress memory retrieval. J Neurosci.
2013:33(11):5017–5026.

Piantadosi PT, Yeates DC, Floresco SB. Cooperative and dissociable
involvement of the nucleus accumbens core and shell in the
promotion and inhibition of actions during active and inhibitory
avoidance. Neuropharmacology. 2018:138:57–71.

Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Func-
tional connectivity with the hippocampus during successful
memory formation. Hippocampus. 2005:15(8):997–1005.

Robinson-Long M, Eslinger PJ, Wang J, Meadowcroft M, Yang Q.
Functional MRI evidence for distinctive binding and consolida-
tion pathways for face-name associations: analysis of activation
maps and BOLD response amplitudes. Top Magn Reson Imaging.
2009:20(5):271–278.

Rolls E. The mechanisms for pattern completion and pattern sepa-
ration in the hippocampus. Front Syst Neurosci. 2013:7:74.

Rosenberg MD, Hsu W-T, Scheinost D, Todd Constable R, Chun
MM. Connectome-based models predict separable components
of attention in novel individuals. J Cogn Neurosci. 2018:30(2):
160–173.

Rosenthal CR, Andrews SK, Antoniades CA, Kennard C, Soto D.
Learning and recognition of a non-conscious sequence of events
in human primary visual cortex. Curr Biol. 2016:26(6):834–841.

Rutherford HJ, Potenza MN, Mayes LC, Scheinost D. The application
of connectome-based predictive modeling to the maternal brain:
implications for mother–infant bonding. Cereb Cortex. 2020:30(3):
1538–1547.

Sacchet MD, Levy BJ, Hamilton JP, Maksimovskiy A, Hertel PT,
Joormann J, Anderson MC, Wagner AD, Gotlib IH. Cognitive
and neural consequences of memory suppression in major
depressive disorder. Cogn Affect Behav Neurosci. 2017:17(1):
77–93.

Schott BH, Wüstenberg T, Wimber M, Fenker DB, Zierhut KC, Seiden-
becher CI, Heinze HJ, Walter H, Düzel E, Richardson-Klavehn A.
The relationship between level of processing and hippocampal–

cortical functional connectivity during episodic memory forma-
tion in humans. Hum Brain Mapp. 2013:34(2):407–424.

Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM,
Papademetris X, Constable RT. Using connectome-based
predictive modeling to predict individual behavior from brain
connectivity. Nat Protoc. 2017:12(3):506–518.

Spiers HJ, Maguire EA, Burgess N. Hippocampal amnesia. Neurocase.
2001:7(5):357–382.

St-Laurent M, Abdi H, Bondad A, Buchsbaum BR. Memory reactiva-
tion in healthy aging: evidence of stimulus-specific dedifferenti-
ation. J Neurosci. 2014:34(12):4175–4186.

Stramaccia DF, Meyer A-K, Rischer KM, Fawcett JM, Benoit RG. Mem-
ory suppression and its deficiency in psychological disorders: a
focused meta-analysis. J Exp Psychol Gen. 2021:150(5):828–850.

Sutherland GR, McNaughton B. Memory trace reactivation in hip-
pocampal and neocortical neuronal ensembles. Curr Opin Neuro-
biol. 2000:10(2):180–186.

Thierry AM, Gioanni Y, Dégénétais E, Glowinski J. Hippocampo-
prefrontal cortex pathway: anatomical and electrophysiological
characteristics. Hippocampus. 2000:10(4):411–419.

Treves A, Rolls ET. Computational analysis of the role of the hip-
pocampus in memory. Hippocampus. 1994:4(3):374–391.

Triana AM, Glerean E, Saramäki J, Korhonen O. Effects of spatial
smoothing on group-level differences in functional brain net-
works. Network Neurosci. 2020:4(3):556–574.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard
O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling
of activations in SPM using a macroscopic anatomical parcella-
tion of the MNI MRI single-subject brain. NeuroImage. 2002:15(1):
273–289.

Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion
on intrinsic functional connectivity MRI. NeuroImage. 2012:59(1):
431–438.

Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz
Y, Thirion B. Assessing and tuning brain decoders: cross-
validation, caveats, and guidelines. NeuroImage. 2017:145(Pt B):
166–179.

Waldhauser GT, Braun V, Hanslmayr S. Episodic memory retrieval
functionally relies on very rapid reactivation of sensory informa-
tion. J Neurosci. 2016:36(1):251–260.

Walhovd KB, Fjell AM, Dale AM, Fischl B, Quinn BT, Makris N,
Salat D, Reinvang I. Regional cortical thickness matters in
recall after months more than minutes. NeuroImage. 2006:31(3):
1343–1351.

Wen H, Liu Z. Broadband electrophysiological dynamics con-
tribute to global resting-state fMRI signal. J Neurosci. 2016:36(22):
6030–6040.

Wheeler ME, Petersen SE, Buckner RL. Memory’s echo: vivid remem-
bering reactivates sensory-specific cortex. Proc Natl Acad Sci.
2000:97(20):11125–11129.

Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connec-
tivity toolbox for correlated and anticorrelated brain networks.
Brain Connect. 2012:2(3):125–141.

Wing EA, Ritchey M, Cabeza R. Reinstatement of individual past
events revealed by the similarity of distributed activation pat-
terns during encoding and retrieval. J Cogn Neurosci. 2015:27(4):
679–691.

Wolosin SM, Zeithamova D, Preston AR. Reward modulation
of hippocampal subfield activation during successful asso-
ciative encoding and retrieval. J Cogn Neurosci. 2012:24(7):
1532–1547.

Xia M, Wang J, He Y. BrainNet viewer: a network visualization tool
for human brain connectomics. PLoS One. 2013:8(7):e68910.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/8/4189/6713280 by guest on 05 February 2024



Yuchi Yan et al. | 4201

Xie H, Chen Y, Lin Y, Hu X, Zhang D. Can’t forget: disruption of
the right prefrontal cortex impairs voluntary forgetting in a
recognition test. Memory. 2020:28(1):60–69.

Yang W, Liu P, Zhuang K, Wei D, Anderson MC, Qiu J. Behav-
ioral and neural correlates of memory suppression in sub-
threshold depression. Psychiatry Res Neuroimaging. 2020:297:
111030.

Yang W, Zhuang K, Liu P, Guo Y, Chen Q, Wei D, Qiu J. Memory
suppression ability can be robustly predicted by the internetwork
communication of frontoparietal control network. Cereb Cortex.
2021:31(7):3451–3461.

Zhu Z, Wang Y. Forgetting unrelated episodic memories through
suppression-induced amnesia. J Exp Psychol Gen. 2021:150(3):
401–413.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/8/4189/6713280 by guest on 05 February 2024


	 Reduced hippocampal-cortical connectivity during memory suppression predicts the ability to forget unwanted memories
	 Introduction
	 Materials and methods
	 Model stability
	 Results
	 Discussion
	 Acknowledgments
	 Supplementary material
	 Funding
	 Data/code availability


