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Figure S1.  

 
 

1H MRS quantification of GABA concentrations in visual cortex. (Top). Positions of the visual 
cortical voxel are displayed on sagittal (top row) and coronal (bottom row) slices extracted from 
an example subject’s tissue-segmented structural scan. (Middle) An example of the 1H MRS 
spectra displayed in one dimension. Blue line:  raw metabolite spectra for an example subject. 
Red line: ProFit basis functions for singlet (one-peak) metabolites, including Creatine (Cre), 
Choline (Cho), and N-acetyl aspartate (NAA). Black line: residuals after fitting. Note the GABA 
CH2 methylene group at 2.28 PPM is invisible on the 1D plot. (Bottom) Plotted for the visual 
cortical voxel (N=20) are the fitted spectra (averaged over all subjects) of the same four 
metabolites, but now spread along two dimensions, the J-resolved axis (±20 Hz) plotted and 
the chemical shift axis (1.5—4 parts per million; ppm). Both plots use identical scaling. Colors 
indicate minimum (blue) and maximum (red) height of spectral contours (arbitrary units). The 
GABA CH2 methylene group is visible at 2.28 ppm (diagonal lines).  
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Figure S2.  

 

Modulation of the medial septal nucleus by suppression. (A) Group whole-brain 
contrast for No-Think<Think. Thought suppression down-regulated septal nucleus 
activity. Septal activations are illustrated on a coronal slice in MNI space. Activations 
are derived from an uncorrected cluster-defining threshold (p<0.001), with cluster level 
false discovery rate p<0.05. Color bars demarcate T-statistics. (B) Group masked 
activations for the No-Think<Think contrast, with activity constrained to the septal 
nucleus ROI volume (small volume FWE corrected p<0.05). (C). A priori region of 
interest analysis: Group hemodynamic time-courses were attenuated in septal nucleus 
by thought suppression (No-Think) relative to retrieval (Think). **p<0.01. 
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Table S1. 
 
Low and High Hippocampal GABA subgroups 
 

  
Subgroups 

       Demographics 
 

low GABA 
 

high GABA 
 

t-test 

       N (Male, Female) 
 

9 (2, 7) 9 (3, 6) t=0.50, p=0.62 

       Age in years (SD) 
 

24.55 (5.34) 25.55 (4.22) t=0.44, p=0.67 

       Cognitive measure 
      

       Criterion Memory Test (%) 74.8±5.65 
 

70±5.11 
 t=0.63, p=0.54 

    

SSRT (ms) 318.88±18.02 323.64±13.42 t=0.21, p=0.84 

  
 

 
   

Go RT (ms) 
 

581.17±16.70 
 

572.23±12.17 
 

t=0.43, p=0.67 

 
 

 
    Go Accuracy (%) 

 
94.16±1.25 94.23±0.76 t=0.05, p=0.96 

     
1H MRS measure     

     

HIP GABA/Cre  0.14±0.01 0.24±0.01 t=6.08, p<0.001 

     

DLPFC GABA/Cre  0.18±0.02 0.16±0.01 t=1.25, p=0.23 

     

VIS GABA/Cre  0.17±0.01 0.16±0.01 t=0.62, p=0.55 

 
      

       SSRT = Stop-signal response time, RT = response time to Go trials. Tabled values are the 
mean of each subgroup ± standard error of the mean. All t-statistics are independent samples t-
tests, with 8 degrees of freedom, on a 2-tailed alpha.  
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Supplemental Methods 

 

Behavioral analysis:  

The stop-signal reaction time (SSRT) was estimated according to the blocked integration 

method provided by the independent-race model1,2. In this model, SST performance is modeled 

as a race between a go process (triggered by the presentation of the go stimulus) and a stop 

process (triggered by the presentation of a stop signal). The stop signal occurs after a variable 

interval, the stop-signal delay (SSD). The point at which the stop process finishes is estimated 

by integrating the response time (RT) distribution and finding the point at which the integral 

equals the probability of responding, p(respond|signal), for a specific SSD. SSRT is then 

calculated by subtracting SSD from the finishing time. We estimated SSRT for each of the 8 

sessions separately before averaging together as a whole, i.e. blocked integration3, to minimize 

underestimation of the SSRT due to gradual slowing of RTs over the course of the experiment.  

Final recall for No-Think, Think, and Baseline items was conditionalized relative to the 

number of successfully learned words, as in prior work4. Thus, the conditionalized analyses 

indicate the percentage of words remembered conditional on correct initial learning. To examine 

relationships between forgetting and brain activation, we expressed below-baseline forgetting as 

recall performance for Baseline minus performance for No-Think items. This was done 

separately for the same probe (SP) and independent probe (IP) test data5. We then averaged 

the forgetting scores of the two tests to get our index of suppression-induced forgetting (SIF). 

 

MRI analysis 

Regions of Interest (ROI) Specification 

Two distinct a priori regions of interest (ROI) were defined for the multimodal imaging 

analyses: the right dorsolateral prefrontal cortex (DLPFC) and the right hippocampus (HIP). For 

the DLPFC ROI, we first derived a binarized map of the [No-Think >Think] contrast in the direct 
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suppression group from Benoit and Anderson6. We then isolated from this map the DLPFC 

cluster, which centered on the following MNI coordinates: x=36, y=38, z=31. For each 

participant, the DLPFC ROI was transformed into native space using the deformation field 

produced at the non-linear warping step of their fMRI data pre-processing (see below). For the 

HIP ROI, we manually traced the hippocampus in native space for each participant, using 

established anatomical guidelines7,8, and the itk-SNAP segmentation toolbox9. We further 

parcellated the HIP ROI into anterior and posterior segments, at the first coronal slice in which 

the uncal apex was visible10 in order to explore possible variation in BOLD responses across the 

longitudinal axis11-13. 

The anatomical landmarks for the DLPFC and HIP ROIs were used to guide positioning of 

the MRS voxels. For the DLPFC MRS voxel (25x25x25 mm3), we used the landmarks 

surrounding the BA46/BA9 DLPFC cluster from Benoit and Anderson6. In the axial plane, the 

posterior face of the ROI was positioned ~1 cm anterior to the precentral sulcus. In the coronal 

place, the ROI was then rotated obliquely until it aligned with the lateral surface of the middle 

frontal gyrus and the superior frontal sulcus. For the HIP MRS voxel (10x10x40 mm3), we used 

a subset of the same anatomical guidelines that were used for manually tracing the 

hippocampus to identify the anterior, lateral, and inferior edges7,8. To improve visualization of 

the hippocampus, the structural T1-weighted volume was first resliced coronally in plane with 

the longitudinal hippocampal axis. In the sagittal plane, the anterior face of the ROI was 

positioned posterior to the white matter border of the alveus, and rotated obliquely until it 

aligned with the longitudinal hippocampal axis. In the coronal plane, the ROI was then centered 

on the triangular grey area of the pes hippocampi.  

For the multimodal control analysis, we defined an a priori region of interest (ROI) in visual 

cortex (25x25x25 mm3) using the same landmarks described in Edden et al.14. In the axial 

plane, the VIS voxel was centered on the midline of the visual cortices. In the sagittal plane, the 
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ROI was then rotated until it aligned with the cerebellar tentorium and parieto-occipital sulcus 

(see Figure S1). 

For the a priori fMRI analysis of the basal forebrain, we used a stereotaxic probabilistic 

anatomical map of the basal forebrain nuclei, derived from the SPM Anatomy Toolbox15,16. 

Given our interest in the septohippocampal pathway, we restricted our analysis to the septal 

nucleus of the basal forebrain (see Figure S2). 

 

Psychophysiological interaction (PPI) analysis:  

We conducted a PPI analysis17 to test the hypothesized relationship between right HIP 

coupling and retrieval suppression. In each subject, the anatomically defined hippocampal ROI 

was binarized into a mask image. To ensure that extracted signal for the PPI reflected 

meaningful voxels, i.e. those differentiating No-Think and Think conditions, we computed the top 

60% of voxels within the masking region that expressed a main effect (Think versus No-Think F-

contrast) using custom Matlab scripts (version R2010b, The MathWorks, Natick, MA). 

Uninformative voxels were discarded from the masking region. The ‘thresholded’ hippocampal 

mask was then converted to a volume of interest (VOI), from which we extracted the first 

eigenvariate, adjusted for main effects of task. The PPI regressor was then calculated as the 

volume-by-volume product of the deconvolved VOI time series and a binary vector coding for 

No-Think and Think trials18. The three PPI regressors were then separately reconvolved with the 

canonical HRF and entered into a first-level GLM, with all other design specifications identical to 

the original GLM (e.g. separately modeled SST and Error regressors). Contrasts were specified 

over the PPI regressor for random effects analysis (1 and −1), reflecting activations either 

positively or negatively related to the PPI interaction term, respectively.  
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Dynamic Causal Modeling (DCM) analysis:  

To test the putative fronto-hippocampal pathway supporting retrieval suppression, we 

modeled the effective connectivity between DLPFC and HIP ROIs using DCM12. DCM explains 

regional effects in terms of dynamically changing patterns of connectivity among nodes of a pre-

specified network during experimentally induced contextual changes19. Note that modeling 

interactions between nodes does not presuppose that these regions exhibit monosynaptic 

connections. Rather, the resulting coupling parameters represent their effective connectivity, 

which may well be mediated by relay nodes19-21. For each subject, we extracted signal from the 

DLPFC node according to the same protocol used for the HIP VOI in the PPI analysis. The HIP 

signal modeled in the PPI and DCM analyses was thus identical. For bilinear DCM analysis, 

three parameters are specified for each model: (1) Intrinsic connections (based on hypothesized 

mono- and poly-synaptic connections between the nodes), (2) bilinear modulation of 

connections by experimental conditions, and (3) driving inputs into nodes from experimental 

conditions. Model fitting was achieved by adjusting the model parameters to maximize the free-

energy estimate of the model evidence19. Neural activity from each node was extracted and 

Bayesian model selection (BMS) was then used to identify the family that could account best for 

the data22. A random-effects approach was taken, since it does not assume that the optimal 

model will be the best for each individual21. This analysis reports the exceedance probability, 

i.e., the probability to which a given model is more likely than any other included model to have 

generated the data from a randomly selected participant. 

For the subgroup analysis comparing model parameters, we performed Bayesian model 

averaging over the bidirectional family model space to obtain, for each subgroup, a single set of 

estimates for model parameters ii (modulatory connections) and iii (driving inputs). 
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1H MRS analysis 

Spectral Fitting 

The basis set provided by ProFit23 comprised nineteen metabolites (see supplemental methods) 

including creatine (Cre), GABA, and glutamate. N-acetyl aspartate (NAA), 

glycerophosphorylcholine (GPC), phosphorylcholine (PCh), alanine (Ala), aspartate (Asp), 

GABA, glucose (Glc), Gln, Glutamate (Glu), Gly, GSH, Lac, myoinositol (Ins), N-acetyl 

aspartylglutamate (NAAG), phosphoethanolamine (PE), taurine (Tau), scyllo-inositol (sI), and 

ascorbic acid (Asc). The Cre methylene (CH2) and methyl (CH3) protons were fitted separately 

whereas the separate GPC and PCh peaks ultimately were considered as a composite 

resonance. 

 

ROI tissue segmentation 

Skull stripping and whole brain tissue-type segmentation of the MP-RAGE volumes was 

performed using BET24 and FAST25, respectively, which are tools provided with the freely-

available FMRIB software library (FSL)26. Matlab (version R2010b, The MathWorks, Natick, MA) 

functions written by one of the authors (A.P.P.) were used to extract the 3D volume 

corresponding to the positioned MRS voxel to obtain within-voxel gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) tissue content for each subject. 

 

Water suppression 

A three-pulse water elimination through T1-effects27 scheme was interleaved with the outer-

volume suppression (OVS) module for global water suppression. In addition, water 

unsuppressed 2D 1H MRS data were acquired from each voxel with a single acquisition 

recorded for each TE step  (acquisition time 3 min 28 sec). The RF transmitter carrier frequency 

was set to 3.0 and 4.7 ppm for water suppressed and unsuppressed data, respectively. Before 

channel recombination, eddy current distortions initially were accounted for using a previously 
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reported method28. The residual water signal was removed from each row of water suppressed 

2D matrices using a Hankel singular value decomposition (HSVD) routine29 written in MATLAB. 

Finally, the 2D matrix was reformatted to produce the individual file types required for ProFit 

read-in. 

Supplemental Notes 

 
1. Weighted least squares regression analyses (WLSR) 
 

We assessed the impact of two limitations inherent to our 1H MRS data, which concern the 

relatively lower field homogeneity of the hippocampus voxel (compared to DLPFC and visual 

cortical voxels), and also the variable interval between fMRI and 1H MRS acquisitions, which 

ranged from 1—111 days across participants. To do so, we re-analyzed our primary findings 

with WLSR, which gives each data point an amount of influence over the parameter estimates 

proportionate to its ‘quality.’ Below we describe how quality was parameterized for each model. 

In general, the WLSR analyses demonstrate that the relationships did not change substantially 

when carefully adjusting the amount of influence of each datapoint over the parameter 

estimates according to the line widths of the hippocampal GABA signal, or inter-scan interval. 

 

WLSR modeling hippocampal line width 

Under the assumption that broader line widths (Hz) obtained from the shims of the hippocampal 

voxel reflect lower quality data, we used weighted least squares regression to give each data 

point its proper amount of influence over the parameter estimates. Each subject was therefore 

precisely weighted by subtracting their hippocampal line width from a constant value, ensuring 

all weights were positive values. Individuals with higher values (broader line widths) contributed 

proportionally smaller weights to the model. Below we show the standardized coefficients 

(Betas) for the primary relationships reported in Table 1, using symmetrical linear regression 

models that differed only by inclusion of the weighting variable (‘weighted’ versus ‘unweighted’).  
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Unweighted Weighted 

HIP GABA / HIP BOLD Beta Beta 

NT   -0.46 -0.43 

T   -0.60 -0.59 

HIP GABA / Behavior     

SIF   0.59 0.62 

HIP GABA / PPI     

DLPFC   -0.61 -0.59 

 

Of the observed significant relationships with hippocampal GABA, statistical inference on only 

one relationship was affected by weighting with line width (the Hip GABA/ Hip BOLD 

relationship during NT), through the actual magnitude of this change was quite small.  

 

WLSR modeling hippocampal GABA fitting error (Cramér-Rao lower bound) 

The Cramér-Rao lower bound (CRLB) values reflect the threshold of uncertainty for the 

error associated with model fitting. For the hippocampal GABA fits, we assumed higher CRLB 

reflected lower quality data (mean=22.86, SD=9.6). Each subject was therefore precisely 

weighted by subtracting their hippocampal GABA CRLB value from a constant value, ensuring 

all weights were positive values. Individuals with higher CRLB values therefore contributed 

proportionally smaller weights to the model. Below we show the standardized coefficients 

(Betas) for the primary relationships reported in Table 1, using symmetrical linear regression 

models that differed only by inclusion of the weighting variable (‘weighted’ versus ‘unweighted’). 

  
Unweighted Weighted 

HIP GABA / HIP BOLD Beta Beta 

NT   -0.46 -0.41 

T   -0.60 -0.54 

HIP GABA / Behavior     

SIF   0.59 0.59 

HIP GABA / PPI     

DLPFC   -0.61 -0.61 
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Of the observed significant relationships with hippocampal GABA, inference on only one 

relationship was affected by weighting with CRLB (The Hip GABA/Hip BOLD relationship during 

NT). Again, the actual magnitude of this change was quite small.  

 

WLSR modeling inter-scan interval 

We next assessed whether the relationships reported in this manuscript were affected when 

subjects were weighted according to their inter-scan interval, under the assumption that longer 

intervals reflect lower quality data. Each subject was precisely weighted by the number of days 

between the fMRI and MRS acquisition, by subtracting this interval from a constant to ensure 

positive values. Individuals with longer intervals therefore contributed proportionally smaller 

weights to the model. Below we show the standardized coefficients (Betas) for the primary 

relationships reported in Table 1, using symmetrical linear regression models that differed only 

by inclusion of the weighting variable (‘weighted’ versus ‘unweighted’). 

 

  
Unweighted Weighted 

HIP GABA / HIP BOLD Beta Beta 

NT   -0.46 -0.50 

T   -0.60 -0.63 

HIP GABA / Behavior 
  SIF   0.59 0.63 

HIP GABA / PPI 
  DLPFC   -0.61 -0.55 

 

Of the observed significant relationships with hippocampal GABA, none were affected by 

weighting with Interval; in fact most were slightly improved.  
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2. Dynamic Causal Modeling 

Whole group analysis 

According to our hypothesis, only memory operations and, specifically, retrieval suppression, 

should drive DLPFC-hippocampal network dynamics. We tested these predictions using 

hierarchical random effects Bayesian model selection to compare model families grouped 

according to a shared feature of interest 22. In the first step, we compared families grouped by 

modulatory connection: bottom-up, top-down, bidirectional, or none. Consistent with prior 

work6,30, the bidirectional family obtained the most evidence.  We found a 91% likelihood that 

the bidirectional model generated participants’ data (known as the exceedance probability, or 

EP). For any given participant, we found a 61% likelihood of identifying the bidirectional model 

as the generator of the data (known as the posterior probability, or PP). Exceedance and 

posterior probabilities for the remaining families were, respectively, as follows: No-modulation 

(1% and 9%), bottom-up (7% and 20%), top-down (1% and 10%). By contrast, a parallel 

analysis, substituting the No-Think and Think conditions with Stop and Go conditions, failed to 

provide evidence favoring any modulatory family over the null family. Exceedance and posterior 

probabilities for the four modulatory families were, respectively, as follows: No-modulation (28% 

and 27%), bottom-up (35% and 31%), top-down (24% and 24%), bidirectional (13% and 17%). 
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